Synthesis and characterization of Co-doped nano-TiO2 through co-precipitation method for photocatalytic activity

An Expression of Concern to this article was published on 08 May 2020

This article has been updated

Abstract

The aim of this work was synthesis and investigation of various properties of Co-doped titanium dioxide nanostructures. Synthesis was conducted by the co-precipitation method using cobalt nitrate and titanium isopropoxide as a precursor, followed by thermal treatment at a temperature of 500 °C. The materials were fully characterized using several techniques (X-ray diffraction XRD, SEM, FTIR, TGA/DTA, UV–Vis diffuse reflectance DRS and photoluminescence). However, dopant has no effect on XRD pattern of the host but it can influence on the various characteristics of host such as optical and electrical properties. The scanning electron microscopy was used to detect the morphology of synthesized nanoparticles which sizes changed with the altitude in the doping concentration to 6%. FTIR spectra exhibit broad peaks where anatase phases of TiO2 demonstrate very sharp UV–Vis band gap results showed the reduction in band gap from from 3.21 eV, for undoped TiO2, to 2.74 eV, for Co doped 6% TiO2. The photocatalytic activity of the samples were studied based on the degradation of methyl orange as a model compound, where the results showed that Co doped 6% TiO2 a good photocatalytic activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

  • 08 May 2020

    The Editor-in-Chief is issuing an editorial expression of concern regarding the article [1]. While the article presents novel information regarding the synthesis and properties of Co-doped titanium dioxide nanostructures, the Editor-in-Chief is concerned regarding the amount of overlap with [2,3] None of the authors have responded to any correspondence from the editor or publisher about this overlap or the Editorial Expression of Concern.

References

  1. 1.

    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A.Y. Faal, S. Bagheri, Adv. Powder Technol. 27, 2066 (2016)

    Article  Google Scholar 

  2. 2.

    I. Krivtsov, M. Ilkaeva, V. Avdin, Z. Amghouz, S.A. Khainakov, J.R. García, E. Diaz, S. Ordóñez, RSC Adv. 5, 36634 (2015)

    Article  Google Scholar 

  3. 3.

    W. Ben Soltan, M.S. Lassoued, S. Ammar, T. Toupance, J. Mater. Sci.: Mater. Electron. 28, 15826 (2017)

    Google Scholar 

  4. 4.

    R. Bargougui, A. Pichavant, J.-F. Hochepied, M.-H. Berger, A. Gadri, S. Ammar, Opt. Mater. 58, 253 (2016)

    Article  Google Scholar 

  5. 5.

    J. Löwenberg, A. Zenker, T. Krahnstöver, M. Boehler, M. Baggenstos, G. Koch, T. Wintgens, Water Res. 94, 246 (2016)

    Article  Google Scholar 

  6. 6.

    A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Results Phys. 7, 3007 (2017)

    Article  Google Scholar 

  7. 7.

    K. Kaviyarasu, C.M. Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E.S. Reddy, N.K. Rotte, C.S. Sharma, F. Thema, D. Letsholathebe, J. Photochem. Photobiol. B 173, 466 (2017)

    Article  Google Scholar 

  8. 8.

    K. Kaviyarasu, K. Kanimozhi, N. Matinise, C.M. Magdalane, G.T. Mola, J. Kennedy, M. Maaza, Mater. Sci. Eng. C 76, 1012 (2017)

    Article  Google Scholar 

  9. 9.

    K. Kaviyarasu, N. Geetha, K. Kanimozhi, C.M. Magdalane, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, M. Maaza, Mater. Sci. Eng. C 74, 325 (2017)

    Article  Google Scholar 

  10. 10.

    H. Ma, Q. Zhuo, B. Wang, Environ. Sci. Technol. 41, 7491 (2007)

    Article  Google Scholar 

  11. 11.

    P.S. Saud, B. Pant, M. Park, S.-H. Chae, S.-J. Park, M. EI-Newehy, S.S. Al-Deyab, H.Y. Kim, Ceram. Int. 41, 1771 (2015)

    Article  Google Scholar 

  12. 12.

    S. Adishkumar, S. Kanmani, J.R. Banu, Desalin. Water Treat. 52, 7957 (2014)

    Article  Google Scholar 

  13. 13.

    K.-N. Lee, Y. Kim, C.-W. Lee, J.-S. Lee, IOP Conf. Ser.: Mater. Sci. Eng. 18, 082021 (2011)

    Article  Google Scholar 

  14. 14.

    C.-H. Huang, Y.T. Yang, R.-A. Doong, Microporous Mesoporous Mater. 142, 473 (2011)

    Article  Google Scholar 

  15. 15.

    A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J Mol. Struct. 1148, 276 (2017)

    Article  Google Scholar 

  16. 16.

    A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Mol. Struct. 1141, 99 (2017)

    Article  Google Scholar 

  17. 17.

    H.-G. Lee, W.-J. Ahn, S.-K. Kim, B.-M. Kang, W.-J. Jeong, M.C. Chung, H.-G. Ahn, J. Nanosci. Nanotechnol. 15, 5466 (2015)

    Article  Google Scholar 

  18. 18.

    S. Yi, L. AikChong, J. Power Sources 280, 467 (2015)

    Article  Google Scholar 

  19. 19.

    B.K. Mutuma, G.N. Shao, W.D. Kim, H.T. Kim, J. Colloid Interface Sci. 442, 1 (2015)

    Article  Google Scholar 

  20. 20.

    J. Zhu, S. Wang, Z. Bian, S. Xie, C. Cai, J. Wang, H. Yang, H. Li, CrystEngComm. 12, 2219 (2010)

    Article  Google Scholar 

  21. 21.

    A. Lassoued, M.S. Lassoued, F. Karolak, S. García-Granda, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci.: Mater. Electron. 28, 18480 (2017)

    Google Scholar 

  22. 22.

    Z. Yanmei, W. Renliang, Z. Wenping, G. Haiyan, W. Xiaopeng, L. Li, Mater. Res. Bull. 61, 400 (2015)

    Article  Google Scholar 

  23. 23.

    Y.-D. Qu, X.-Q. Kong, X.-J. Li, H.-H. Yan, Acta Phys. Sin. 63, 037301 (2014)

    Google Scholar 

  24. 24.

    H.H. Yan, X.C. Huang, S.X. Xi, Combust. Explos. Shock Waves 50, 192 (2014)

    Article  Google Scholar 

  25. 25.

    F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A 359, 25 (2009)

    Article  Google Scholar 

  26. 26.

    J. Navas, C. Fernandez-Lorenzo, T. Aguilar, R. Alcantara, J. Martin-Calleja, Phys. Status Solidi A 209, 378 (2012)

    Article  Google Scholar 

  27. 27.

    A. Lassoued, M. Ben hassine, F. Karolak, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci.: Mater. Electron. 28, 18857 (2017)

    Google Scholar 

  28. 28.

    B. Zhou, M. Schulz, H.Y. Lin, S.I. Shah, J. Qu, C.P. Huang, Appl. Catal. B 92, 41 (2009)

    Article  Google Scholar 

  29. 29.

    T. Sreethawong, S. Laehsalee, S. Chavadej, Int. J. Hydrog. Energy 33, 5947 (2008)

    Article  Google Scholar 

  30. 30.

    Y. Wu, G. Lu, S. Li, J. Phys. Chem. C 113, 9950 (2009)

    Article  Google Scholar 

  31. 31.

    X. Lu et al., Adv. Funct. Mater. 20, 509 (2010)

    Article  Google Scholar 

  32. 32.

    Z. Liu, Y. Li, C. Liu, J. Ya, W. Zhao, D. Zhao, L. An, ACS Appl. Mater. Interfaces 3, 1721 (2011)

    Article  Google Scholar 

  33. 33.

    X. Wei-Wei, D.S. Yuan, H. Lin-Hua, L. Lin-Yun, W. Jong-Jia, Chin. Phys. Lett. 23, 2288 (2006)

    Article  Google Scholar 

  34. 34.

    T. Aguilar, J. Navas, R. Alcantara, C. Fernandez-Lorenzo, J.J. Gallardo, G. Blanco, J. Martin-Calleja, Chem. Phys. Lett. 571, 49 (2013)

    Article  Google Scholar 

  35. 35.

    C. Wattanawikkam, W. Pecharapa, K.N. Ishihara, Ceram. Int. 43, S397 (2017)

    Article  Google Scholar 

  36. 36.

    P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, Curr. Appl. Phys. 13, 479 (2013)

    Article  Google Scholar 

  37. 37.

    S.K. Kansal, S. Sood, A. Umar, S.K. Mehta, J. Alloys Compd. 581, 392 (2013)

    Article  Google Scholar 

  38. 38.

    J.L. Ropero-Vega, A. Aldana-Pérez, R. Gómez, M.E. Niño-Gómez, Appl. Catal. A 379, 24 (2010)

    Article  Google Scholar 

  39. 39.

    U.G. Akpan, B.H. Hameed, J. Colloid Interface Sci. 357, 168 (2011)

    Article  Google Scholar 

  40. 40.

    S. Liu, X. Chen, X. Chen, Chin. J. Catal. 27, 697 (2006)

    Article  Google Scholar 

  41. 41.

    A.M.T. Silva, C.G. Silva, G. Dražic, J.L. Faria, Catal. Today 144, 13 (2009)

    Article  Google Scholar 

  42. 42.

    W. Ben Soltan, S. Nasri, M.S. Lassoued, S. Ammar, J. Mater. Sci.: Mater. Electron. 28, 6649 (2017)

    Google Scholar 

  43. 43.

    A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, J. Phys. E 97, 328 (2018)

    Article  Google Scholar 

  44. 44.

    C.H. Kim, B.H. Kim, K.S. Yang, Carbon 50, 2472 (2012)

    Article  Google Scholar 

  45. 45.

    J.-M. Herrmann, Catal. Today 53, 115 (1999)

    Article  Google Scholar 

  46. 46.

    F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, RSC Adv. 4, 27654 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Unité de Recherche Electrochimie, Matériaux et Environnement UREME (UR17ES45), Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès, Tunisie.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Saber Lassoued.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lassoued, M.S., Lassoued, A., Ammar, S. et al. Synthesis and characterization of Co-doped nano-TiO2 through co-precipitation method for photocatalytic activity. J Mater Sci: Mater Electron 29, 8914–8922 (2018). https://doi.org/10.1007/s10854-018-8910-x

Download citation