Enhancement in thermoelectric performance of Cu3SbSe4 thin films by In(III) doping; synthesized by arrested precipitation technique

  • Vishvanath B. Ghanwat
  • Sawanta S. Mali
  • Chaitali S. Bagade
  • Kishorkumar V. Khot
  • Neha D. Desai
  • Chang Kook Hong
  • P. N. Bhosale


We have successfully synthesized p-type Cu3(Sb1−xInx)Se4 thin films by solution based arrested precipitation technique and studied their thermoelectric properties for the first time. The deposited thin films were characterized for their structural, morphological, compositional and electrical transport properties. Thin films shows enhancement in figure of merit (ZT) with increasing In(III) content. The maximum ZT 0.267 obtained for Cu3(Sb0.92In0.08)Se4 thin film at 300 K.



One of the authors VBG is thankful to Department of Chemistry, Yashwantrao Chavan Institute of Science, Satara. This research work was supported by Basics Science Research Program through the National Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A2054051). This work was also supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016H1D3A1909289) for an outstanding overseas young researcher (Dr. Sawanta S. Mali).


  1. 1.
    B. Poudel, Q. Hao, Y. Ma et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008). CrossRefGoogle Scholar
  2. 2.
    E. Li, N. Wang, H. He, H. Chen, Improved thermoelectric performances of SrTiO3 ceramic doped with Nb by surface modification of nanosized titania. Nanoscale Res. Lett. 11, 188 (2016). CrossRefGoogle Scholar
  3. 3.
    K. Kadel, L. Kumari, X. Wang et al., Synthesis and structure of undoped and indium-doped thermoelectric lead telluride nanoparticles. Nanoscale Res. Lett. 9, 227 (2014). CrossRefGoogle Scholar
  4. 4.
    M.L. Snedaker, Y. Zhang, C.S. Birkel et al., Silicon-based thermoelectrics made from a boron-doped silicon dioxide nanocomposite. Chem. Mater. 25, 4867–4873 (2013). CrossRefGoogle Scholar
  5. 5.
    C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010). CrossRefGoogle Scholar
  6. 6.
    D. Pinisetty, R.V. Devireddy, Thermal conductivity of semiconductor (bismuth–telluride)–semimetal (antimony) superlattice nanostructures. Acta Mater. 58, 570–576 (2010). CrossRefGoogle Scholar
  7. 7.
    C. Chiritescu, D.G. Cahill, N. Nguyen et al., Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303, 989–990 (2004). CrossRefGoogle Scholar
  8. 8.
    J. Zhou, R. Yang, Quantum and classical thermoelectric transport in quantum dot nanocomposites. J. Appl. Phys. 110, 084317–084329 (2011). CrossRefGoogle Scholar
  9. 9.
    P.K. Rawat, B. Paul, P. Banerji, Exploration of Zn resonance levels and thermoelectric properties in I-doped PbTe with ZnTe nanostructures. ACS Appl Mater Interfaces 6, 3995–4004 (2014). CrossRefGoogle Scholar
  10. 10.
    V.B. Ghanwat, S.S. Mali, C.S. Bagade et al., Thermoelectric properties of indium (III)-doped copper antimony selenide thin films deposited using a microwave-assisted technique. Energy Technol. 4, 835–842 (2016). CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, H. Wang, W. Liu et al., Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ. Sci. 5, 5246–5251 (2012). CrossRefGoogle Scholar
  12. 12.
    R.B. Balow, E.P. Tomlinson, M.M. Abu-omar et al., Solution-based synthesis and characterization of earth abundant Cu3(As,Sb)Se4 nanocrystal alloys: towards scalable room-temperature thermoelectric devices. J. Mater. Chem. A 4, 2198–2204 (2016). CrossRefGoogle Scholar
  13. 13.
    C. Yang, F. Huang, L. Wu, K. Xu, New stannite-like p-type thermoelectric material Cu3SbSe4. J. Phys. D 44, 295404–295408 (2011). CrossRefGoogle Scholar
  14. 14.
    X.Y. Li, D. Li, H.X. Xin et al., Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures. J. Alloys Compd. 561, 105–108 (2013). CrossRefGoogle Scholar
  15. 15.
    D. Tang, J. Yang, F. Liu et al., One-step electrodeposition and annealing of CuSbSe2 thin films. Electrochem. Solid-State Lett. 15, D11–D13 (2011). CrossRefGoogle Scholar
  16. 16.
    D. Li, R. Li, X.Y. Qin et al., Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance. Dalton Trans. 43, 1888–1896 (2014). CrossRefGoogle Scholar
  17. 17.
    J. Zhou, G.Q. Bian, Q.Y. Zhu et al., Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure. J. Solid State Chem. 182, 259–264 (2009). CrossRefGoogle Scholar
  18. 18.
    Y. Liu, J. Yang, E. Gu et al., Colloidal synthesis and characterisation of Cu3SbSe3 nanocrystals. J. Mater. Chem. A 2, 6363–6367 (2014). CrossRefGoogle Scholar
  19. 19.
    C.S. Bagade, S.S. Mali, V.B. Ghanwat et al., A facile and low cost strategy to synthesize Cd1–xZnxSe thin films for photoelectrochemical performance: effect of zinc content. RSC Adv. 5, 55658–55668 (2015). CrossRefGoogle Scholar
  20. 20.
    K.V. Khot, S.S. Mali, N.B. Pawar et al., Development of nanocoral-like Cd(SSe) thin films using an arrested precipitation technique and their application. New J. Chem. 38, 5964–5974 (2014). CrossRefGoogle Scholar
  21. 21.
    W. Li, M. Ibáñez, R.R. Zamani et al., Cu2HgSnSe4 nanoparticles: synthesis and thermoelectric properties. CrystEngComm 15, 8966–8971 (2013). CrossRefGoogle Scholar
  22. 22.
    I.-H. Kim, S.-M. Choi, W.-S. Seo, D.-I. Cheong, Thermoelectric properties of Cu-dispersed bi0.5sb1.5te3. Nanoscale Res. Lett. 7, 2 (2012). CrossRefGoogle Scholar
  23. 23.
    V.B. Ghanwat, S.S. Mali, R.M. Mane et al., Thermoelectric properties of nanocrystalline Cu3SbSe4 thin films deposited by a self-organized arrested precipitation technique. New J. Chem. 39, 5661–5668 (2015). CrossRefGoogle Scholar
  24. 24.
    V.B. Ghanwat, S.S. Mali, S.D. Kharade et al., Microwave assisted synthesis, characterization and thermoelectric properties of nanocrystalline copper antimony selenide thin films. RSC Adv. 4, 51632–51639 (2014). CrossRefGoogle Scholar
  25. 25.
    H. Kou, Y. Jiang, J. Li et al., Enhanced photoelectric performance of Cu2–xSe nanostructure by doping with In3+. J. Mater. Chem. 22, 1950–1956 (2012). CrossRefGoogle Scholar
  26. 26.
    D. Tahir, S. Tougaard, Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy. J. Phys. Condens. Matter 24, 175002–175009 (2012). CrossRefGoogle Scholar
  27. 27.
    K. Sasaki, K. Takatsugi, K. Ishikura, T. Hirajima, Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values. Hydrometallurgy 100, 144–151 (2010). CrossRefGoogle Scholar
  28. 28.
    W.L. Li, S.Q. Lie, Y.Q. Du et al., Hydrophilic Cu2–xSe/reduced graphene oxide nanocomposites with tunable plasmonic properties and their applications in cellular dark-field microscopic imaging. J. Mater. Chem. B 2, 7027–7033 (2014). CrossRefGoogle Scholar
  29. 29.
    N. Pollock, G. Fowler, L.J. Twyman, S.L. McArthur, Synthesis and characterization of immobilized PAMAM dendrons. Chem. Commun. 2007, 2482–2484 (2007). CrossRefGoogle Scholar
  30. 30.
    S. Aminorroaya-Yamini, C. Zhang, X. Wang, I. Nevirkovets, Crystal structure, electronic structure and thermoelectric properties of n-type BiSbSTe2. J. Phys. D 45, 125301–125306 (2012). CrossRefGoogle Scholar
  31. 31.
    P. Liu, S. Yu, W. Fan, W. Shi, A new inorganic–organic hybrid In2Se3(en) as hollow nanospheres: hydrothermal synthesis and near-infrared photoluminescence properties. Dalton Trans. 42, 2887–2893 (2013). CrossRefGoogle Scholar
  32. 32.
    H.L. Poh, P. Šimek, Z. Sofer et al., Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. J. Mater. Chem. A 1, 13146–13153 (2013). CrossRefGoogle Scholar
  33. 33.
    Y. Liang, B. Kong, A. Zhu et al., A facile and efficient strategy for photoelectrochemical detection of cadmium ions based on in situelectrodeposition of CdSe clusters on TiO2 nanotubes. Chem. Commun. 48, 245–247 (2012). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vishvanath B. Ghanwat
    • 1
    • 3
  • Sawanta S. Mali
    • 2
  • Chaitali S. Bagade
    • 3
  • Kishorkumar V. Khot
    • 3
  • Neha D. Desai
    • 3
  • Chang Kook Hong
    • 2
  • P. N. Bhosale
    • 3
  1. 1.Department of ChemistryYashwantrao Chavan Institute of ScienceSataraIndia
  2. 2.School of Applied Chemical EngineeringChonnam National UniversityGwangjuSouth Korea
  3. 3.Materials Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations