Advertisement

Photocatalytic and antibacterial activity of bismuth and copper co-doped cobalt ferrite nanoparticles

  • Venkat Savunthari Kirankumar
  • Shanmugam Sumathi
Article

Abstract

Herein we reported the photocatalytic and antibacterial activity of CoFe2O4, CoFe1.9Bi0.1O4 and Cu0.5Co0.5Fe1.9Bi0.1O4 nanoparticles obtained by solution combustion technique using glycine as a fuel. The obtained nanoparticles were analyzed by various techniques such as powder XRD, FTIR, UV-DRS and SEM-EDAX. The band gap value of CoFe2O4 nanoparticle is decreases gradually from 1.46 to 1.00 eV (CoFe1.9Bi0.1O4) and 0.85 eV (Cu0.5Co0.5Fe1.9Bi0.1O4) due to the doping of copper and bismuth. The photocatalytic activity of synthesized nanoparticles was evaluated for the degradation of congo red dye. 89 and 87% removal efficiency of congo red dye was achieved in 90 min under different light (UV and visible light) illumination utilizing 10 mg of Cu0.5Co0.5Fe1.9Bi0.1O4 catalyst. Antibacterial activity of the compounds was tested against two organisms Staphylococcus aureus and Escherichia coli by well diffusion method. Co-doping of copper and bismuth improved the antibacterial activity against the organisms S. aureus (29 mm) and E. coli (34 mm) when compared to cobalt ferrite.

Notes

Acknowledgements

The authors gratefully acknowledge VIT University, Vellore for the support through Seed Grant for Research and other instrumental facilities.

Supplementary material

10854_2018_8890_MOESM1_ESM.docx (864 kb)
Supplementary material 1 (DOCX 863 KB)

References

  1. 1.
    B. Acemioglu, J. Colloid Interface Sci. 274(2), 371–379 (2003)CrossRefGoogle Scholar
  2. 2.
    J.R. Rochester, Reprod. Toxicol. 42, 132–155 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Zhao, Y. Li, C. Zhang, Q. Zeng, Q. Zhou, J. Hazard. Mater. 155, 305–311 (2008)CrossRefGoogle Scholar
  4. 4.
    B. Pan, D.H. Lin, H. Mashayekhi, B.S. Xing, Environ. Sci. Technol. 42, 5480–5485 (2008)CrossRefGoogle Scholar
  5. 5.
    R.A. Torres, C. Petrier, E. Combet, M. Carrier, C. Pulgarin, Ultrason. Sonochem. 15, 605–611 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Poerschmann, U. Trommler, T. Gorecki, Chemosphere 79, 975–986 (2010)CrossRefGoogle Scholar
  7. 7.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 28(14), 1–8 (2017)Google Scholar
  8. 8.
    P.P. Das, A. Roya, M. Tathavadekar, P.S. Dev, Appl. Catal. B 203, 692–703 (2017)CrossRefGoogle Scholar
  9. 9.
    H. Guo, K. Lin, Z. Zheng, F. Xiao, S. Li, Dyes Pigment. 92, 1278–1284 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2006)Google Scholar
  11. 11.
    A. Ziarati, M. Sobhani-Nasab, M.R. Rahimi-Nasrabadi, A. Ganjali, Badiei, J. Rare Earth 35(4), 374–381 (2017)CrossRefGoogle Scholar
  12. 12.
    Z. Sobhani-Nasab, M. Zahraei, M. Akbari, S.M. Maddahfar, A. Hosseinpour-Mashkani, Samavati, J. Mol. Struct. 1139, 430–435 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Sobhani-Nasab, M. Ziarati, M.R. Rahimi-Nasrabadi, A. Ganjali, Badiei, Res. Chem. Intermed. 43(11), 6155–6165 (2017)CrossRefGoogle Scholar
  14. 14.
    V.S. Kiran, S. Sumathi, J. Magn. Magn. Mater. 421, 113–119 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Talukdar, D. Mandal, K. Mandal, Chem. Phys. Lett. 672, 57–62 (2017)CrossRefGoogle Scholar
  16. 16.
    S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Photochem. Photobiol. B 113, 70–77 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Ceram. Int. 43, 540–548 (2017)CrossRefGoogle Scholar
  18. 18.
    T. Soltani, M.H. Entezari, Chem. Eng. J. 223, 145–154 (2013)CrossRefGoogle Scholar
  19. 19.
    Z. Zhu, X. Li, Q. Zhao, Y. Li, C. Sun, Y. Cao, Mater. Res. Bull. 48, 2927–2932 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Sanpo, C.C. Berndt, C. Wen, J. Wang, Acta Biomater. 9, 5830–5837 (2013)CrossRefGoogle Scholar
  21. 21.
    Z. Mao, R. Xie, D. Fu, L. Zhang, H. Xu, Y. Zhong, X. Sui, Sep. Purif. Technol. 176, 277–286 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Aggrawal, I. Chauhan, P. Mohanty, Mater. Express 5(5), 429–436 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Sumathi, V. Lakshmipriya, J. Mater. Sci. Mater. Electron. 28(3), 2795–2802 (2017)CrossRefGoogle Scholar
  24. 24.
    Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Appl. Surf. Sci. 254, 6972–6975 (2008)CrossRefGoogle Scholar
  25. 25.
    T. Lin, G. Seshadri, J.A. Kelber, Appl. Surf. Sci. 119, 83–92 (1997)CrossRefGoogle Scholar
  26. 26.
    Y.K. Hsu, C.H. Yu, Y.C. Chen, Y.G. Lin, Rsc Adv. 2, 12455–12459 (2012)CrossRefGoogle Scholar
  27. 27.
    P. Jiang, D. Prendergast, F. Borondics, S. Porsgaard, L. Giovanetti, E. Pach, J. Newberg, H. Bluhm, F. Besenbacher, M. Salmeron, J. Chem. Phys. 138, 024704 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Liang, G. Zhu, P. Liu, X. Luo, C. Tan, L. Jin, J. Zhou, Superlattices Microstruct. 72, 272–282 (2014)CrossRefGoogle Scholar
  29. 29.
    P.F. Newhouse, S.E.R. Lillo, G. Li, L. Zhou, A. Shinde, D. Guevarra, S.K. Suram, E. Soedarmadji, M.H. Richter, X. Qu, K. Persson, J.B. Neaton, J.M. Gregoire, Chem. Mater. 29, 10027–10036 (2017)CrossRefGoogle Scholar
  30. 30.
    R.S. Srinivasa, R.B.V. Appa, K.S. Roopas, B. Sreedhar, J. Mater. Sci. Technol. 30, 77–89 (2014)CrossRefGoogle Scholar
  31. 31.
    X.F. Lu, D.J. Wu, R.Z. Li, S.H. Ye, Y.X. Tong, G.R. Li, J. Mater. Chem. A 2, 4706–4713 (2014)CrossRefGoogle Scholar
  32. 32.
    R. Zou, K. Xu, T. Wang, G. He, Q. Liu, X. Liu, Z. Zhang, J. Hu, J. Mater. Chem. A 1, 8560–8566 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Nezamzadeh-Ejhieh, S. Moeinirad, Desalination 273, 248–257 (2011)CrossRefGoogle Scholar
  34. 34.
    S. Wei, X. Hu, H. Liu, Q. Wang, C. He, J. Hazard. Mater. 294, 168–176 (2015)CrossRefGoogle Scholar
  35. 35.
    W. Jo, S. Kumar, M.A. Isaacs, A.F. Lee, S. Karthikeyan, Appl. Catal. B 201, 159–168 (2017)CrossRefGoogle Scholar
  36. 36.
    H. Zhu, R. Jiang, L. Xiao, Y. Chang, Y. Guan, X. Li, G. Zeng, J. Hazard. Mater. 169, 933–940 (2009)CrossRefGoogle Scholar
  37. 37.
    H.R. Pouretedal, M.H. Keshavarz, J. Alloys Compd. 501, 130–135 (2010)CrossRefGoogle Scholar
  38. 38.
    N. Daneshvar, M. Rabbani, N. Modirshahla, M.A. Behnajady, J. Photochem. Photobiol. A 168, 39–45 (2004)CrossRefGoogle Scholar
  39. 39.
    A.A. Babaei, A.H. Mahvi, A.R. Mesdaghiniai, R. Nabizadeh, N.J. Haghighi, F. Vaezi, Asian J. Chem. 22(9), 7243–7256 (2010)Google Scholar
  40. 40.
    S. Mohammadi, M. Sohrabi, A.N. Golikand, A. Fakhri, J. Photochem. Photobiol. B 161, 217–221 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Venkat Savunthari Kirankumar
    • 1
  • Shanmugam Sumathi
    • 1
  1. 1.Department of Chemistry, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations