Advertisement

The relationships between macro-properties and micro-structure of Pb(Zn1/3Ni2/3)z–Pb(Ni1/3Nb2/3)x–Pb(Zr,Ti)yO3 ceramics near morphotropic phase boundary

  • Guigui Peng
  • Chi Pang
  • Deyi Zheng
  • Keqin Jin
Article
  • 60 Downloads

Abstract

The phase structure, microstructure and electronic properties of relaxor piezoelectric zPZN–xPNN–yPZT (with x/y = 44/50, 47/47, 50/44) ceramics were researched. The Pb(Zn1/3Ni2/3)z–Pb(Ni1/3Nb2/3)x–Pb(Zr,Ti)yO3 composite ceramics have been prepared by a traditional solid-state reaction method. The X-ray diffraction (XRD) shows that all the samples have a pure perovskite structure, the phase structure are changed with the range of PNN/PZT ratios. When PNN/PZT = 47/47, the ceramics have a tetragonal–rhombohedral co-existed phase structure (morphotropic phase boundary), and high piezoelectric constant of 800 pC/N, the remnant polarization (Pr = 14.05 µC/cm2) increased a lot. The other ceramics can not compare to.Furthermore, the results of TEM high resolution images and SAED patterns revealed the ceramics have different phase structures, which further demonstrated the MPB structure is optimum when PNN/PZT = 47/47. The observation of above provide a possible method further to characterize the MPB structure in piezo-ceramics, and this is good for researching the MPB structure.

Notes

Acknowledgements

The authors acknowledge the support of the Science and Technology Cooperation Project of Guizhou Province (Project Number: LH[2015]7649) and the National NaturalScience Foundation of China (NSFC) (Project Number: 701983171106).

References

  1. 1.
    L. Zhang, Z. Xu, Y.J. Feng, Y.Y. Hu, X. Yao, Ceram. Int. 34, 709 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Sun, C. Feng, Q. Sun, H. Zhou, Mater. Sci. Eng. B 122, 61 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Zhang, F. Yu., J. Am. Ceram. Soc. 10, 3153 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Hao, S.J. Zhang, T.R. Shrout, J. Am. Ceram. Soc. 91, 2232 (2008)CrossRefGoogle Scholar
  5. 5.
    C.S. Yu, H.L. Hsieh, Mater. Res. Bull. 46, 2527 (2011)CrossRefGoogle Scholar
  6. 6.
    W. Chaisan, R. Yimnirun, S. Ananta, D.P. Cann, Mater. Lett. 28, 3732 (2005)CrossRefGoogle Scholar
  7. 7.
    K. Ramam, A.J. Bell, C.R. Bowen, K. Chandramouli, J. Alloy. Compd. 473, 330–335 (2009)CrossRefGoogle Scholar
  8. 8.
    U.A.M. Geetika, Mater. Sci. Eng. B 3, 171 (2010)CrossRefGoogle Scholar
  9. 9.
    H.Y. Chen, J.W. Long, Z.Y. Meng, Mater. Sci. Eng. B 99, 433 (2003)CrossRefGoogle Scholar
  10. 10.
    F. Kahoul, L. Hamzioui, A. Boutarfaia, Energy Procedia 50, 87 (2014)CrossRefGoogle Scholar
  11. 11.
    R. Gupta, S. Das, T.P. Sinha, K.K. Bamzai, Ceram. Int. 41, 13241 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Prasatkhetragarn, R. Yimnirun, Ceram. Int. 39, S91 (2013)CrossRefGoogle Scholar
  13. 13.
    J.J. Zhou, K. Wang, J.F. Li, X.W. Zhang, H. Liu, J.Z. Fang, J. Mater. Sci.: Mater. Electron. 25, 2540 (2014)Google Scholar
  14. 14.
    M. Kondo, M. Hida, M. Tsukada, K. Kurihara, N. Kamehara, Jpn. J. Appl. Phys. 36, 6043 (1997)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, X. Zhu, J. Zhu, X. Zeng, X. Feng, J. Liao, Ceram. Int. 42, 4080 (2016)CrossRefGoogle Scholar
  16. 16.
    D. Yuan, Y. Yang, Q. Hu, Y. Wang, J. Am. Ceram. Soc. 97, 3999 (2015)CrossRefGoogle Scholar
  17. 17.
    Q. Liu, Q. Sun, W. Ma, M. Li, Q. Xu, Q. Zhang, J. Eur. Ceram. Soc. 34, 1181 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Nabunmee, G. Rujijanagul, N. Vittayakorn, D.P. Cann, J. Appl. Phys. 9, 797 (2007)Google Scholar
  19. 19.
    N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, Mater. Sci. Eng. B 3, 258 (2004)CrossRefGoogle Scholar
  20. 20.
    B. Fang, Q. Du, L. Zhou, X. Zhao, J. Appl. Phys. 7, 1298 (2009)Google Scholar
  21. 21.
    J.B. Babu, G. Madeswaran, J. Cryst. Growth 292, 399 (2006)CrossRefGoogle Scholar
  22. 22.
    G. Du, R. Liang, J. Wang, L. Wang, W. Zhang, G. Wang et al., Ceram. Int. 39, 9299 (2013)CrossRefGoogle Scholar
  23. 23.
    G. Peng, C. Chen, J. Zhang, D. Zheng, S. Hu, H. Zhang, J. Mater. Sci.: Mater. Electron. 27, 3145 (2016)Google Scholar
  24. 24.
    T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men et al., Energy Environ. Sci. 10, 528 (2017)CrossRefGoogle Scholar
  25. 25.
    T. Li, Z. Du, N. Tamura, M. Ye, S. Inguva, W. Lu et al., J. Eur. Ceram. Soc. 38, 148 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials and MetallurgyGui Zhou UniversityGuiyangChina

Personalised recommendations