Preparation, characterization and microwave absorption properties of porous nickel ferrite hollow nanospheres/helical carbon nanotubes/polypyrrole nanowires composites

  • Lindong Li
  • Longfei Lu
  • Shuhua Qi


Porous nickel ferrite hollow nanospheres/helical carbon nanotubes/polypyrrole nanowires (PNFHSs/HCNTs/PNWs) composites were successfully fabricated by in situ chemical oxidative polymerization method of PNWs with PNFHSs and HCNTs. The phase structure, chemical state, morphology, thermal stability and electromagnetic parameters of samples were analyzed and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, thermogravimetric analysis and vector network analyzer. The possible mechanism of microwave absorption of composites and the influence of the matching thickness on microwave attenuation is also discussed. The results indicate that at the thickness of 2.1 mm, PNFHSs/HCNTs/PNWs composites exhibit strong microwave absorption capacity (RL = − 33.94 dB at 11.39 GHz) and the effective absorption bandwidth is 3.22 GHz (9.18–12.4 GHz).


  1. 1.
    M.S. Cao, W.L. Song, Z.L. Hou, Carbon 48, 788–796 (2010)CrossRefGoogle Scholar
  2. 2.
    A.L. Feng, Z.R. Jia, Y. Zhao, H.L. Lv, J. Alloys Compd. 745, 547–554 (2018)CrossRefGoogle Scholar
  3. 3.
    H.J. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi, W.Z. Wang, J. Yuan, M.S. Cao, ACS Appl. Mater. Int. 7, 7073–7077 (2015)CrossRefGoogle Scholar
  4. 4.
    M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, ACS Appl. Mater. Int. 4, 6949–6956 (2012)CrossRefGoogle Scholar
  5. 5.
    X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Chem. Eng. J. 332, 321–330 (2018)CrossRefGoogle Scholar
  6. 6.
    G.L. Wu, H.J. Wu, K.K. Wang, C.H. Zheng, Y.Q. Wang, A.L. Feng, RSC Adv. 6, 58069–58076 (2016)CrossRefGoogle Scholar
  7. 7.
    W. Li, X. Qiao, Q. Zheng, T. Zhang, J. Alloys Compd. 509, 6206–6211 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Lou, J. Wang, Z. Zhao, X. Cai, Y. Hou, J. Mater. Sci. 48, 5664–5672 (2013)CrossRefGoogle Scholar
  9. 9.
    C.K. Das, S. Sahoo, S. Dhibar, Express Polym. Lett. 6, 965–974 (2012)CrossRefGoogle Scholar
  10. 10.
    L.S.V. Dyke, C.R. Martin, Langmuir 6, 1118–1123 (1990)CrossRefGoogle Scholar
  11. 11.
    V.K. Varadan, V.V. Varadan, US Patent 4,948,922, 1990Google Scholar
  12. 12.
    A.L. Feng, G.L. Wu, C. Pan, Y.Q. Wang, J. Nanosci. Nanotechnol. 17, 3786–3791 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Tian, F. Meng, F. Meng, X. Chen, Y. Guo, Y. Wang, W. Zhu, Z. Zhou, ACS Appl. Mater. Int. 9, 15711–15718 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Qi, Y. Yang, W. Zhong, Y. Deng, C. Au, Y. Du, J. Solid State Chem. 182, 2691–2697 (2009)CrossRefGoogle Scholar
  15. 15.
    R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Appl. Phys. Lett. 88, 033105 (2006)CrossRefGoogle Scholar
  16. 16.
    J. Dui, G. Zhu, S. Zhou, ACS Appl. Mater. Int. 5, 10081–10089 (2013)CrossRefGoogle Scholar
  17. 17.
    W. Cheng, K. Tang, Y. Qi, J. Sheng, Z. Liu, J. Mater. Chem. 20, 1799–1805 (2010)CrossRefGoogle Scholar
  18. 18.
    Q.F. Wu, K.X. He, H.Y. Mi, X.G. Zhang, Mater. Chem. Phys. 101, 367–371 (2007)CrossRefGoogle Scholar
  19. 19.
    W. Zhong, J. Deng, Y. Yang, W. Yang, Macromol. Rapid Commun. 26, 395–400 (2010)CrossRefGoogle Scholar
  20. 20.
    X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, Carbon 48, 365–376 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Pan, M. Zhang, Y. Nakayama, J. Appl. Phys. 91, 10058–10061 (2002)CrossRefGoogle Scholar
  22. 22.
    S.J. Gregg, K.S.W. Sing, H.W. Salzberg, J. Elecrochem. Soc. 114, 279C (1967)CrossRefGoogle Scholar
  23. 23.
    L.P. Zhu, H.M. Xiao, W.D. Zhang, Y. Yang, S.Y. Fu, Cryst. Growth Des. 8, 1113–1118 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Cui, J. Shen, F. Cheng, Z. Tao, J. Chen, J. Power Sources 196, 2195–2201 (2011)CrossRefGoogle Scholar
  25. 25.
    Y.W. Ju, J.H. Park, H.R. Jung, S.J. Cho, W.J. Lee, Mater. Sci. Eng. B 147, 7–12 (2008)CrossRefGoogle Scholar
  26. 26.
    W. Jiang, J.S. Mccloy, A.S. Lea, J.A. Sundararajan, Q. Yao, Y. Qiang, Phys. Rev. B 83, 134435 (2011)CrossRefGoogle Scholar
  27. 27.
    P. Liu, Y. Huang, X. Zhang, Mater. Lett. 120, 143–146 (2014)CrossRefGoogle Scholar
  28. 28.
    H.N. Tien, S.H. Hur, Phys. Status Solidi RRL 6, 379–381 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Xie, X. Hong, Y. Gao, M. Li, J. Liu, J. Wang, J. Lu, Synth. Met. 162, 677–681 (2012)CrossRefGoogle Scholar
  30. 30.
    Y.F. Zhu, Q.Q. Ni, Y.Q. Fu, T. Natsuki, J. Nanopart. Res. 2013, 1988–1988 (2013)CrossRefGoogle Scholar
  31. 31.
    M.R. Karim, C.J. Lee, S.L. Mu, J. Polym. Sci. A 44, 5283–5290 (2006)CrossRefGoogle Scholar
  32. 32.
    P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Electrochim. Acta 56, 4532–4539 (2011)CrossRefGoogle Scholar
  33. 33.
    P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, B.K. Ling, ACS Appl. Mater. Int. 9, 16404–16416 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Xu, J. Luo, W. Yao, J. Xu, T. Li, J. Alloys Compd. 636, 310–316 (2015)CrossRefGoogle Scholar
  35. 35.
    Z. Chu, H. Cheng, W. Xie, L. Sun, Ceram. Int. 38, 4867–4873 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang, J. Yuan, ACS Appl. Mater. Int. 8, 22615–22622 (2016)CrossRefGoogle Scholar
  37. 37.
    M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, J. Mater. Chem. A 2, 16403–16409 (2014)CrossRefGoogle Scholar
  38. 38.
    G.L. Wu, Y.H. Cheng, X. Feng, Z.R. Jia, Q. Xie, Mater. Sci. Semiconduct. Proc. 41, 6–11 (2016)CrossRefGoogle Scholar
  39. 39.
    G. Tong, Y. Liu, T. Cui, Y. Li, Y. Zhao, J. Guan, Appl. Phys. Lett. 108, 7370 (2016)Google Scholar
  40. 40.
    W. Zhou, X. Hu, C. Sun, J. Yan, S. Zhou, P. Chen, Polym. Adv. Technol. 25, 83–88 (2014)CrossRefGoogle Scholar
  41. 41.
    J. Feng, Y. Wang, Y. Hou, J. Li, L. Li, Ceram. Int. 42, 17814–17821 (2016)CrossRefGoogle Scholar
  42. 42.
    S.H. Hosseini, M. Moloudi, Appl. Phys. A 120, 1165–1171 (2015)CrossRefGoogle Scholar
  43. 43.
    X. Hong, Y. Xie, X. Wang, M. Li, Z. Le, Y. Gao, Y. Huang, Y. Qin, Y. Ling, Compos. Sci. Technol. 117, 215–224 (2015)CrossRefGoogle Scholar
  44. 44.
    H.J. Wu, G.L. Wu, Y.Y. Ren, X.H. Li, L.D. Wang, Chem.-Eur. J. 22, 8864–8871 (2016)CrossRefGoogle Scholar
  45. 45.
    B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.J. Xie, R. Zhang, J. Mater. Chem. A 3, 10345–10352 (2015)CrossRefGoogle Scholar
  46. 46.
    B. Zhao, X.Q. Guo, Y.Y. Zhou, T.T. Su, C. Ma, R. Zhang, CrystEngComm 19, 2178–2186 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations