Sol–gel synthesis and luminescence properties of CaGd2(MoO4)4:Pr3+ phosphors for white LED applications

  • Saravana Kumar Jaganathan
  • Anthuvan John Peter


A series of novel red emitting CaGd2(MoO4)4:xPr3+ (x = 0.005–0.045) micro phosphors were successfully prepared via a simple citrate assisted sol–gel method-ray powder diffraction, scanning electron microscope, photoluminescence spectra and decay life time measurement were utilized to study the properties of CaGd2(MoO4)4:xPr3+ phosphors well crystallized, fine and homogenous micro particles appeared at the heat treatment at 900 °C for 6 h. The results confirms that CaGd2(MoO4)4 host has tetragonally distorted scheelite structure with space group I41/a. Under the excitation wavelength of 449 nm Pr3+ activated CaGd2(MoO4)4 phosphor shows the red emission peaked at about 649 nm, which is attributed to 3P03F2 transition of Pr3+ ions. The CIE co-ordinates of CaGd2(MoO4)4:0.035Pr3+ phosphor are x = 0.702 and y = 0.289, which are evidently close to the standard NSTC value. The luminescence properties of as prepared phosphors indicates that CaGd2(MoO4)4:xPr3+ phosphor may be a potential red emitting material for W-LED applications.


  1. 1.
    N. Narendran, Y. Gu, J.P. Freyssinier, H. Yu, L. Deng, J. Cryst. Growth 268, 449 (2004)CrossRefGoogle Scholar
  2. 2.
    P.F. Smet, A.B. Parmentier, D. Poelman, J. Electrochem. Soc. 158, R37 (2011)CrossRefGoogle Scholar
  3. 3.
    R.J. Yu, Y. Guo, L.L. Wang, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, J. Lumin. 155, 317 (2014)CrossRefGoogle Scholar
  4. 4.
    F.W. Mo, L.Y. Zhou, Q. Pang, F.Z. Gong, Z.J. Liang, Ceram. Int. 38, 6289 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, F. Huang, L. Liu, X. Liu, S. Zheng, D. Chen, Mater. Lett. 167, 1–3 (2015)CrossRefGoogle Scholar
  6. 6.
    K. Wang, W. Feng, X. Feng, Y. Li, P. Mi, S. Shi, Spectrochim. Acta A 154, 72–75 (2015)CrossRefGoogle Scholar
  7. 7.
    F.B. Xiong, Z.W. Zhang, H.F. Lin, L.J. Wang, Y.C. Xu, W.Z. Zhu, Opt. Mater. 42, 394–398 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Guan, T. Tsuboi, Y. Huang, W. Huang, Dalton Trans. 43, 3698–3703 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Durairajan, D. Thangaraju, S. Moorthy Babu, M.A. Valente, Mater. Chem. Phys. 179, 295–303 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Li, X. Zhao, Y. Jiang, J. Rare Earths 33, 33–36 (2015)CrossRefGoogle Scholar
  11. 11.
    C.L. Gan, X.L. Xu, J.H. Yang, Z.F. Peng, Key Eng. Mater. 633, 253–256 (2014)CrossRefGoogle Scholar
  12. 12.
    R. Krishnan, J. Thirumalai, V. Mahalingam, S. Mantha, J. Mater. Sci.: Mater. Electron. 26(11), 8568–8580 (2015)Google Scholar
  13. 13.
    C. Guo, H.-K. Yang, Z. Fu, L. Li, B.-C. Choi, J.-H. Jeongw, J. Am. Ceram. Soc. 92(8), 1713–1718 (2009)CrossRefGoogle Scholar
  14. 14.
    C.S. Lim, V.V. Atuchin, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, J. Alloys Compd. 695, 737–746 (2017)CrossRefGoogle Scholar
  15. 15.
    C.S. Lim, V. Atuchin, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, J. Am. Ceram. Soc. 98(10), 3223–3230 (2015)CrossRefGoogle Scholar
  16. 16.
    L.J. Burcham, I.E. Wachs, Spectrochim. Acta A 54, 1355 (1998)CrossRefGoogle Scholar
  17. 17.
    A. Kato, S. Oishi, T. Shishido, M. Yamazaki, S. Lida, J. Phys. Chem. Solids 66, 2079 (2005)CrossRefGoogle Scholar
  18. 18.
    C.S. Lim, Asian J. Chem. 26, 24 (2014)CrossRefGoogle Scholar
  19. 19.
    D. Hu, W. Huan, Y. Wang, J. Mater. Sci. Mater. Electron. 26, 7290–7294 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Cao, Y. Wang, X. Ma, J. Li, Z. Zhu, Z. You, F. Yang, C. Sun, T. Cao, Y. Ji, C. Tu, J. Alloys Compd. 509, 185–189 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Li, L. Liu, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou, X. Xu, J. Lumin. 143, 14 (2013)CrossRefGoogle Scholar
  22. 22.
    H. Wu, Y. Hu, F. Kang, N. Li, G. Ju, Z. Mu, Z. Yang, J. Am. Ceram. Soc. 95, 3214 (2012)CrossRefGoogle Scholar
  23. 23.
    N. Hirosaki, R.-J. Xie, K. Kimoto, Appl. Phys. Lett. 86, 211905 (2005)CrossRefGoogle Scholar
  24. 24.
    S. Ku¨ck, S. Irena, M. Henke, E. Osiac, Chem. Phys. 310, 139–144 (2005)CrossRefGoogle Scholar
  25. 25.
    F. Zhang, Z. Bi, A. Huang, Z. Xiao, J. Lumin. 160, 85–89 (2015)CrossRefGoogle Scholar
  26. 26.
    P.F. Smet, A.B. Parmentier, D. Poelman, J. Electrochem. Soc. 158, R37-R54 (2011)CrossRefGoogle Scholar
  27. 27.
    P. Du, J.S. Yu, J. Mater. Sci. 51, 5427–5435 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Du, J.S. Yu, J. Lumin. 179, 451–456 (2016)CrossRefGoogle Scholar
  29. 29.
    M.V.V. Kumar, K.R. Gopal, R.R. Reddy, G.V.L. Reddy, N.S. Hussain, B.C. Jamalaiah, J. Non Cryst. Solids 364, 20–27 (2013)CrossRefGoogle Scholar
  30. 30.
    B. Savoini, J.E. Muñoz-Santiuste, R. Gonz´alez, Phys. Rev. B 56, 5856 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Saravana Kumar Jaganathan
    • 1
    • 2
    • 3
  • Anthuvan John Peter
    • 4
  1. 1.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.IJN-UTM Cardiovascular Engineering Center, Department of Clinical Sciences, Faculty of Biosciences and Medical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  4. 4.Department of PhysicsSt. Anne’s College of Engineering and TechnologyPanrutiIndia

Personalised recommendations