Skip to main content
Log in

Surface sulfurization of ZnO/ZnS core shell nanowires and shell layers dependent optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the unique properties and superior performance, ZnO/ZnS core shell nanostructures have been applied in many photoelectric devices. Varied growth methods can synthesize ZnO/ZnS core shell samples, which exhibit different crystal and optical properties, and have the positive or negative effect on performance of related devices. To investigate the growth and properties, ZnO/ZnS core shell nanowires were grown through surface sulfurization. X-ray diffraction and scanning electron microscopy measurements indicated surface sulfurization degree can affect crystal quality. In addition, photoluminescence results exhibited that ZnO/ZnS heterojunction emission properties were dependent on shell layers quality. By increasing the amount of surface powder, it would improve shell layers’ crystal quality. And with optimal surface sulfurization degree, the vacancies and interstitial atoms defects can be restrained, which may improve photo-generated carriers separation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.M. Mohammad, Z. Hassan, N.M. Ahmed, N.H. Al-Hardan, M. Bououdina, J. Mater. Sci.: Mater. Electron. 26, 1322–1331 (2015)

    CAS  Google Scholar 

  2. X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, X. Wang, ACS Appl. Mater. Interfaces 7, 10331 (2015)

    Article  CAS  Google Scholar 

  3. M. Pirhashemi, A.H. Yangjeh, J. Mater. Sci.: Mater. Electron. 27, 4098–4108 (2016)

    CAS  Google Scholar 

  4. J. Cheng, Q. Wang, C. Zhang, X. Yang, R. Hu, J. Huang, J. Yu, L. Li, J. Mater. Sci.: Mater. Electron. 27, 7004–7009 (2016)

    CAS  Google Scholar 

  5. F. Schütt, V. Postica, R. Adelung, O. Lupan, ACS Appl. Mater. Interfaces 9, 23107 (2017)

    Article  Google Scholar 

  6. F. Yu, X. Fang, H. Jia, M. Liu, X. Shi, C. Xue, T. Chen, Z. Wei, F. Fang, H. Zhu, H. Xin, X. Wang, Chem. Eur. J. 22, 8053–8058 (2016)

    Article  CAS  Google Scholar 

  7. X. Ma, H. Ye, X. Duan, C. Li, G. Li, S. Xu, RSC Adv. 7, 29992–29997 (2017)

    Article  CAS  Google Scholar 

  8. P. Mandal, A. Singh, S. Kasture, A.V. Gopal, A.S. Vengurlekar, Opt. Mater. 33, 1786–1791 (2011)

    Article  CAS  Google Scholar 

  9. X. Fang, Z. Wei, Y. Yang, C. Rui, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, X. Wang, ACS Appl. Mater. Interfaces.8, 1661 (2016)

    Article  CAS  Google Scholar 

  10. X. Huang, M. Wang, M.G. Willinger, L. Shao, D.S. Su, X.M. Meng, ACS Nano 6, 7333–7339 (2012)

    Article  CAS  Google Scholar 

  11. H. Ye, Z. Su, F. Tang, C. Zheng, G. Chen, J. Wang, S. Xu, Sci. Bull. 62, 1525–1529 (2017)

    Article  CAS  Google Scholar 

  12. C.C. Zheng, S.J. Xu, J.Q. Ning, Y.N. Chen, J. Appl. Phys. 110, 041301 (2011)

    Google Scholar 

  13. W.J. Kuang, Q. Li, Y. Sun, J. Chen, H. Tolner, Mater. Lett. 178, 27–30 (2016)

    Article  CAS  Google Scholar 

  14. S.A. Hassanzadeh-Tabrizi, J. Mater. Sci.: Mater. Electron. 28, 9528–9534 (2017)

    CAS  Google Scholar 

  15. K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, A. Mascarenhas, Adv. Mater. 20, 3248–3253 (2010)

    Article  Google Scholar 

  16. B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao, Nano Lett. 15, 3988 (2015)

    Article  CAS  Google Scholar 

  17. X. Fang, X.Y. Wang, J. Tang, F. Fang, S. Lu, X. Wang, S. Wang, H. Zhao, D. Fang, J. Li, X. Chu, F. Wang, X. Wang, Z. Wei, Nanosci. Nanotechnol. Lett. 7, 643–647 (2015)

    Article  Google Scholar 

  18. W.V.D. Stam, F.T. Rabouw, S.J.W. Vonk, J.J. Geuchies, H. Ligthart, A.V. Petukhov, C.M. Donega, Nano Lett. 16, 2608 (2016)

    Article  Google Scholar 

  19. S.C. Rai, K. Wang, Y. Ding, J.K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, Z.L. Wang, ACS Nano 9, 6419 (2015)

    Article  CAS  Google Scholar 

  20. L. Dloczik, R. Engelhardt, K. Ernst, S. Fiechter, I. Sieber, R. Könenkamp, Appl. Phys. Lett. 78, 3687–3689 (2001)

    Article  CAS  Google Scholar 

  21. R.G. Zhang, W. Zhuo, J.Q. Liu, H.J. Wang, H. Gao, J. Synth. Cryst. 6, 047 (2012)

    CAS  Google Scholar 

  22. Y. Kavanagh, D.C. Cameron, Thin Solid Films 398, 24–28 (2001)

    Article  Google Scholar 

  23. M. Buffière, A.E. Mel, N. Lenaers, G. Brammertz, A.E. Zaghi, M. Meuris, J. Poortmans, Adv. Energy Mater. (2015). https://doi.org/10.1002/aenm.201401689

    Article  Google Scholar 

  24. Z.S. Li, S.R. Wang, Z. Jiang, M. Yang, Y.L. Lu, S.J. Liu, Q.C. Zhao, R.T. Hao, Physica B 502, 56–60 (2016)

    Article  CAS  Google Scholar 

  25. J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, J. Power Sources 273, 600–607 (2015)

    Article  CAS  Google Scholar 

  26. S. Tarish, A.S.H. Al-Haddad, R. Xu, D. Cao, Z. Wang, S. Qu, G. Nabi, Y. Lei, J. Mater. Chem. C 4, 1369–1374 (2016)

    Article  CAS  Google Scholar 

  27. M.K. Tsai, W. Huang, S.Y. Hu, J.W. Lee, Micro Nano Lett. 11, 192–195 (2016)

    Article  CAS  Google Scholar 

  28. G. Murugadoss, V. Ramasamy, Spectrochim. Acta A 93, 290 (2012)

    Article  CAS  Google Scholar 

  29. S. Biswas, S. Kar, Nanotechnology 19, 045710 (2008)

    Article  Google Scholar 

  30. Y.N. Chen, S.J. Xu, C.C. Zheng, J.Q. Ning, F.C.C. Ling, W. Anwand, G. Brauer, W. Skorupa, Appl. Phys. Lett. 105, 041912 (2014)

    Article  Google Scholar 

  31. Y.N. Chen, C.C. Zheng, J.Q. Ning, R.X. Wang, C.C. Ling, S.J. Xu, Superlatt. Microstruct. 99, 1–6 (2016)

    Article  Google Scholar 

  32. X. Wang, J. Shi, Z. Feng, M. Li, C. Li, Phys. Chem. Chem. Phys. 13, 4715–4723 (2011)

    Article  CAS  Google Scholar 

  33. Y. Hu, H. Qian, Y. Liu, G. Du, F. Zhang, L. Wang, X. Hu, CrystEngComm 13, 3438–3443 (2011)

    Article  CAS  Google Scholar 

  34. F. Li, Y. Jiang, L. Hu, L. Liu, Z. Li, X.J. Huang, J. Alloys Compd. 474, 531–535 (2009)

    Article  CAS  Google Scholar 

  35. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561–572 (2010)

    Article  CAS  Google Scholar 

  36. Y. Bando, Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009)

    Article  Google Scholar 

  37. F. Li, X. Liu, T. Kong, Z. Li, X. Huang, Cryst. Res. Technol. 44, 402–408 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61404009, 61474010, 61574022, 61504012, 61674021 and 11674038), the Foundation of State Key Laboratory of High Powder Semiconductor Lasers, the Developing Project of Science and Technology of Jilin Province (20160519007JH, 20160520117JH, 20160101255JC, 20160204074GX and 20170520117JH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Fang or Zhipeng Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1446 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fang, X., Li, R. et al. Surface sulfurization of ZnO/ZnS core shell nanowires and shell layers dependent optical properties. J Mater Sci: Mater Electron 29, 7924–7929 (2018). https://doi.org/10.1007/s10854-018-8792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8792-y

Navigation