Advertisement

Surface sulfurization of ZnO/ZnS core shell nanowires and shell layers dependent optical properties

  • Yanbin Wang
  • Xuan Fang
  • Ruxue Li
  • Yongfeng Li
  • Bin Yao
  • Dengkui Wang
  • Jilong Tang
  • Dan Fang
  • Xinwei Wang
  • Xiaohua Wang
  • Zhipeng Wei
Article
  • 127 Downloads

Abstract

With the unique properties and superior performance, ZnO/ZnS core shell nanostructures have been applied in many photoelectric devices. Varied growth methods can synthesize ZnO/ZnS core shell samples, which exhibit different crystal and optical properties, and have the positive or negative effect on performance of related devices. To investigate the growth and properties, ZnO/ZnS core shell nanowires were grown through surface sulfurization. X-ray diffraction and scanning electron microscopy measurements indicated surface sulfurization degree can affect crystal quality. In addition, photoluminescence results exhibited that ZnO/ZnS heterojunction emission properties were dependent on shell layers quality. By increasing the amount of surface powder, it would improve shell layers’ crystal quality. And with optimal surface sulfurization degree, the vacancies and interstitial atoms defects can be restrained, which may improve photo-generated carriers separation efficiency.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61404009, 61474010, 61574022, 61504012, 61674021 and 11674038), the Foundation of State Key Laboratory of High Powder Semiconductor Lasers, the Developing Project of Science and Technology of Jilin Province (20160519007JH, 20160520117JH, 20160101255JC, 20160204074GX and 20170520117JH).

Supplementary material

10854_2018_8792_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1446 KB)

References

  1. 1.
    S.M. Mohammad, Z. Hassan, N.M. Ahmed, N.H. Al-Hardan, M. Bououdina, J. Mater. Sci.: Mater. Electron. 26, 1322–1331 (2015)Google Scholar
  2. 2.
    X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, X. Wang, ACS Appl. Mater. Interfaces 7, 10331 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Pirhashemi, A.H. Yangjeh, J. Mater. Sci.: Mater. Electron. 27, 4098–4108 (2016)Google Scholar
  4. 4.
    J. Cheng, Q. Wang, C. Zhang, X. Yang, R. Hu, J. Huang, J. Yu, L. Li, J. Mater. Sci.: Mater. Electron. 27, 7004–7009 (2016)Google Scholar
  5. 5.
    F. Schütt, V. Postica, R. Adelung, O. Lupan, ACS Appl. Mater. Interfaces 9, 23107 (2017)CrossRefGoogle Scholar
  6. 6.
    F. Yu, X. Fang, H. Jia, M. Liu, X. Shi, C. Xue, T. Chen, Z. Wei, F. Fang, H. Zhu, H. Xin, X. Wang, Chem. Eur. J. 22, 8053–8058 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Ma, H. Ye, X. Duan, C. Li, G. Li, S. Xu, RSC Adv. 7, 29992–29997 (2017)CrossRefGoogle Scholar
  8. 8.
    P. Mandal, A. Singh, S. Kasture, A.V. Gopal, A.S. Vengurlekar, Opt. Mater. 33, 1786–1791 (2011)CrossRefGoogle Scholar
  9. 9.
    X. Fang, Z. Wei, Y. Yang, C. Rui, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, X. Wang, ACS Appl. Mater. Interfaces.8, 1661 (2016)CrossRefGoogle Scholar
  10. 10.
    X. Huang, M. Wang, M.G. Willinger, L. Shao, D.S. Su, X.M. Meng, ACS Nano 6, 7333–7339 (2012)CrossRefGoogle Scholar
  11. 11.
    H. Ye, Z. Su, F. Tang, C. Zheng, G. Chen, J. Wang, S. Xu, Sci. Bull. 62, 1525–1529 (2017)CrossRefGoogle Scholar
  12. 12.
    C.C. Zheng, S.J. Xu, J.Q. Ning, Y.N. Chen, J. Appl. Phys. 110, 041301 (2011)Google Scholar
  13. 13.
    W.J. Kuang, Q. Li, Y. Sun, J. Chen, H. Tolner, Mater. Lett. 178, 27–30 (2016)CrossRefGoogle Scholar
  14. 14.
    S.A. Hassanzadeh-Tabrizi, J. Mater. Sci.: Mater. Electron. 28, 9528–9534 (2017)Google Scholar
  15. 15.
    K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, A. Mascarenhas, Adv. Mater. 20, 3248–3253 (2010)CrossRefGoogle Scholar
  16. 16.
    B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao, Nano Lett. 15, 3988 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Fang, X.Y. Wang, J. Tang, F. Fang, S. Lu, X. Wang, S. Wang, H. Zhao, D. Fang, J. Li, X. Chu, F. Wang, X. Wang, Z. Wei, Nanosci. Nanotechnol. Lett. 7, 643–647 (2015)CrossRefGoogle Scholar
  18. 18.
    W.V.D. Stam, F.T. Rabouw, S.J.W. Vonk, J.J. Geuchies, H. Ligthart, A.V. Petukhov, C.M. Donega, Nano Lett. 16, 2608 (2016)CrossRefGoogle Scholar
  19. 19.
    S.C. Rai, K. Wang, Y. Ding, J.K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, Z.L. Wang, ACS Nano 9, 6419 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Dloczik, R. Engelhardt, K. Ernst, S. Fiechter, I. Sieber, R. Könenkamp, Appl. Phys. Lett. 78, 3687–3689 (2001)CrossRefGoogle Scholar
  21. 21.
    R.G. Zhang, W. Zhuo, J.Q. Liu, H.J. Wang, H. Gao, J. Synth. Cryst. 6, 047 (2012)Google Scholar
  22. 22.
    Y. Kavanagh, D.C. Cameron, Thin Solid Films 398, 24–28 (2001)CrossRefGoogle Scholar
  23. 23.
    M. Buffière, A.E. Mel, N. Lenaers, G. Brammertz, A.E. Zaghi, M. Meuris, J. Poortmans, Adv. Energy Mater. (2015).  https://doi.org/10.1002/aenm.201401689 Google Scholar
  24. 24.
    Z.S. Li, S.R. Wang, Z. Jiang, M. Yang, Y.L. Lu, S.J. Liu, Q.C. Zhao, R.T. Hao, Physica B 502, 56–60 (2016)CrossRefGoogle Scholar
  25. 25.
    J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, J. Power Sources 273, 600–607 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Tarish, A.S.H. Al-Haddad, R. Xu, D. Cao, Z. Wang, S. Qu, G. Nabi, Y. Lei, J. Mater. Chem. C 4, 1369–1374 (2016)CrossRefGoogle Scholar
  27. 27.
    M.K. Tsai, W. Huang, S.Y. Hu, J.W. Lee, Micro Nano Lett. 11, 192–195 (2016)CrossRefGoogle Scholar
  28. 28.
    G. Murugadoss, V. Ramasamy, Spectrochim. Acta A 93, 290 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Biswas, S. Kar, Nanotechnology 19, 045710 (2008)CrossRefGoogle Scholar
  30. 30.
    Y.N. Chen, S.J. Xu, C.C. Zheng, J.Q. Ning, F.C.C. Ling, W. Anwand, G. Brauer, W. Skorupa, Appl. Phys. Lett. 105, 041912 (2014)CrossRefGoogle Scholar
  31. 31.
    Y.N. Chen, C.C. Zheng, J.Q. Ning, R.X. Wang, C.C. Ling, S.J. Xu, Superlatt. Microstruct. 99, 1–6 (2016)CrossRefGoogle Scholar
  32. 32.
    X. Wang, J. Shi, Z. Feng, M. Li, C. Li, Phys. Chem. Chem. Phys. 13, 4715–4723 (2011)CrossRefGoogle Scholar
  33. 33.
    Y. Hu, H. Qian, Y. Liu, G. Du, F. Zhang, L. Wang, X. Hu, CrystEngComm 13, 3438–3443 (2011)CrossRefGoogle Scholar
  34. 34.
    F. Li, Y. Jiang, L. Hu, L. Liu, Z. Li, X.J. Huang, J. Alloys Compd. 474, 531–535 (2009)CrossRefGoogle Scholar
  35. 35.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561–572 (2010)CrossRefGoogle Scholar
  36. 36.
    Y. Bando, Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009)CrossRefGoogle Scholar
  37. 37.
    F. Li, X. Liu, T. Kong, Z. Li, X. Huang, Cryst. Res. Technol. 44, 402–408 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanbin Wang
    • 1
  • Xuan Fang
    • 1
  • Ruxue Li
    • 1
  • Yongfeng Li
    • 2
  • Bin Yao
    • 2
  • Dengkui Wang
    • 1
  • Jilong Tang
    • 1
  • Dan Fang
    • 1
  • Xinwei Wang
    • 1
  • Xiaohua Wang
    • 1
  • Zhipeng Wei
    • 1
  1. 1.State Key Laboratory of High Powder Semiconductor Lasers, School of ScienceChangchun University of Science and TechnologyChangchunPeople’s Republic of China
  2. 2.Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of PhysicsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations