Fabrication and enhanced dielectric properties of polyimide matrix composites with core–shell structured CaCu3Ti4O12@TiO2 nanofibers

  • Junchuan Wang
  • Yunchen Long
  • Ying Sun
  • Xueqin Zhang
  • Hong Yang
  • Baoping Lin
Article
  • 61 Downloads

Abstract

Core–shell structured CaCu3Ti4O12@TiO2 (CCTO@TiO2) nanofibers were prepared via a normal coaxial electrospinning technique with sol precursors. Polyimide (PI) nanocomposite films containing the core–shell structured CCTO@TiO2 nanofibers were fabricated by the solution casting method. The core–shell structure of the CCTO@TiO2 nanofibers was confirmed through transmission electron microscope. The percolation of the CCTO/TiO2 interfaces leads to much enhanced interfacial polarization of the CCTO@TiO2 nanofibers, which gives rise to substantially increased dielectric constant of the nanocomposites. Compared to the nanocomposites with CCTO nanofibers, the breakdown strength of the nanocomposites with CCTO@TiO2 nanofibers is also increased due to the charge shifting is limited to the interfacial zone of CCTO/TiO2 interfaces, instead of in the PI matrix to form a percolation path. For the nanocomposites with 5 vol% nanofibers, the dielectric constant of 5.55 was enhanced to 5.85 and the breakdown strength of 201 kV/mm was increased to 236 kV/mm by utilizing the TiO2 coated CCTO nanofibers, while the dielectric loss shows no obvious change. Meanwhile, the PI nanocomposite film filled with 1 vol% CCTO@TiO2 nanofibers exhibits a maximal energy density of 1.6 J/cm3. The core–shell structured nanofibers open up an effective way to optimize the dielectric properties of polymer nanocomposites with high energy density.

Notes

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (21304018 and 21374016), Jiangsu Provincial Natural Science Foundation of China (BK20130619 and BK20130617) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334 (2006)CrossRefGoogle Scholar
  2. 2.
    E.J. Barshaw, J. White, M.J. Chait, J.B. Cornette, J. Bustamante, F. Folli, D. Biltchick, G. Borelli, G. Picci, M. Rabuffi, IEEE Trans. Magn. 43, 223 (2007)CrossRefGoogle Scholar
  3. 3.
    T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, IEEE Trans. Dielectr. Electr. Insul. 12, 669 (2005)CrossRefGoogle Scholar
  4. 4.
    Y. Hirose, K. Adachi, Macromolecules 39, 1779 (2006)CrossRefGoogle Scholar
  5. 5.
    R.A.C. Amoresi, A.A. Felix, E.R. Botero, N.L.C. Domingues, E.A. Falcao, M.A. Zaghete, A.W. Rinaldi, Ceram. Int. 41, 14733 (2015)CrossRefGoogle Scholar
  6. 6.
    E. Baer, L. Zhu, Macromolecules 50, 2239 (2017)CrossRefGoogle Scholar
  7. 7.
    W. Xia, Z. Xu, F. Wen, Z. Zhang, Ceram. Int. 38, 1071 (2012)CrossRefGoogle Scholar
  8. 8.
    Q. Li, G. Zhang, F. Liu, K. Han, M.R. Gadinski, C. Xiong, Q. Wang, Energy Environ. Sci. 8, 922 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Zhu, Z. Liu, F. Wang, J. Mater. Sci. 52, 50489 (2017)Google Scholar
  10. 10.
    Y. Chen, B. Lin, X. Zhang, J. Wang, C. Lai, Y. Sun, Y. Liu, H. Yang, J. Mater. Chem. A 2, 14118 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Fang, X. Liu, Z.K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, J. Mater. Chem. A 3, 10005 (2015)CrossRefGoogle Scholar
  12. 12.
    G.C. Psarras, Composites A 37, 1545 (2006)CrossRefGoogle Scholar
  13. 13.
    C. Wu, X. Huang, X. Wu, J. Yu, L. Xie, P. Jiang, Compos. Sci. Technol. 72, 521 (2012)CrossRefGoogle Scholar
  14. 14.
    W. Liu, J. Chen, D. Zhou, X. Liao, M. Xie, R. Sun, Polym. Chem. 8, 725 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Yang, Y. Lin, C.W. Nan, Carbon 47, 1096 (2009)CrossRefGoogle Scholar
  16. 16.
    Z.M. Dang, M.S. Zheng, J.W. Zha, Small 12, 1688 (2016)CrossRefGoogle Scholar
  17. 17.
    N.A. Almeida, P.M. Martins, S. Teixeira, J.A. Lopes da Silva, V. Sencadas, K. Kühn, G. Cuniberti, S. Lanceros-Mendez, P.A.A.P. Marques, J. Mater. Sci. 51, 6974 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Liu, M. Tian, L. Zhang, Y. Lu, T.W. Chan, N. Ning, J. Mater. Sci. 51, 2616 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Yao, Z. Pan, S. Liu, J. Zhai, H.H.D. Chen, ACS Appl. Mater. Interfaces 8, 26343 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Tang, H.A. Sodano, Appl. Phys. Lett. 102, 063901 (2013)CrossRefGoogle Scholar
  21. 21.
    K. Yu, Y. Niu, Y. Zhou, Y. Bai, H. Wang, J. Am. Ceram. Soc. 96, 2519 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Liu, J. Wang, B. Shen, J. Zhai, Ceram. Int. 43, 585 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Zou, D. Kushner, S. Zhang, Appl. Phys. Lett. 98, 082905 (2011)CrossRefGoogle Scholar
  24. 24.
    X. Zhang, S. Zhao, F. Wang, Y. Ma, L. Wang, D. Chen, C. Zhao, W. Yang, Appl. Surf. Sci. 403, 71 (2017)CrossRefGoogle Scholar
  25. 25.
    T. Wang, X.H. Zhang, D. Chen, Y.H. Ma, L. Wang, C.W. Zhao, W.T. Yang, Appl. Surf. Sci. 356, 232 (2015)CrossRefGoogle Scholar
  26. 26.
    P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J. Li, J.P. Calame, J.W. Perry, ACS Nano 3, 2581 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Liu, J. Zhai, J. Wang, S. Xue, W. Zhang, ACS Appl. Mater. Interfaces 6, 1533 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Luo, Y. Shen, S. Yu, Y. Wan, W.H. Liao, R. Sun, C.P. Wong, Energy Environ. Sci. 10, 137 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Zhang, Q. Chi, L. Liu, Y. Chen, J. Dong, T. Ma, X. Wang, Q. Lei, J. Mater. Sci.: Mater. Electron. 28, 2502 (2016)Google Scholar
  30. 30.
    J. Wang, X. Chao, G. Li, L. Feng, K. Zhao, J. Mater. Sci.: Mater. Electron. 28, 5435 (2016)Google Scholar
  31. 31.
    X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu, J. Du, Y. Lin, C.-W. Nan, Adv. Mater. 27, 819 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Liu, J. Wang, B. Shen, J. Zhai, H. Hao, L. Zhao, J. Alloys Compd. 696, 136 (2017)CrossRefGoogle Scholar
  33. 33.
    Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen, H. Wang, ACS Appl. Mater. Interfaces 9, 4024 (2017)CrossRefGoogle Scholar
  34. 34.
    X. Lin, P. Hu, Z. Jia, S. Gao, J. Mater. Chem. A 4, 2314 (2016)CrossRefGoogle Scholar
  35. 35.
    Z. Pan, J. Zhai, B. Shen, J. Mater. Chem. A 5, 15217 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Liu, S. Xue, B. Shen, J. Zhai, Appl. Phys. Lett. 107, 032907 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin, C.W. Nan, Adv. Mater. 28, 2055 (2016)CrossRefGoogle Scholar
  38. 38.
    J.C. Wang, Y.C. Long, Y. Sun, X.Q. Zhang, H. Yang, B. Lin, Appl. Surf. Sci. 426, 437 (2017)CrossRefGoogle Scholar
  39. 39.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Junchuan Wang
    • 1
  • Yunchen Long
    • 1
  • Ying Sun
    • 1
  • Xueqin Zhang
    • 1
  • Hong Yang
    • 1
  • Baoping Lin
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations