Advertisement

Luminescent properties of Eu3+ co-doped Y2O3: Dy3+ phosphors synthesized via ceramic route

  • Tarkeshwari Verma
  • Sadhana Agrawal
Article
  • 64 Downloads

Abstract

The Eu3+ co-doped Y2O3: Dy3+ phosphors were synthesized by solid-state reaction method, also known as a ceramic route. The properties of synthesized phosphors were studied with the help of PXRD, SEM, EDX, FTIR, Photoluminescence (PL) spectra, CIE coordinates and Thermoluminescent (TL) spectra. The PL spectra exhibit emissions at 486, 588, 596, 610, 681 and 693 nm due to the energy transfer between dopant ions. The blue emission is dominated due to dysprosium ions. The TL spectra were recorded for synthesized phosphors irradiated by UV and γ radiation. For UV irradiated phosphors, TL glow peaks were obtained at 455, 490 and 549 K whereas for γ irradiated phosphors TL glow peaks were obtained at 470 and 650 K. Using deconvoluted TL curves, kinetic parameters were computed by peak shape method. Second order kinetics were obtained with activation energy values varying from 7.553 × 10− 1 to 11.10 × 10− 1 eV for UV irradiated phosphors and 11.152 × 10− 1 to 15.252 × 10− 1 eV for γ irradiated phosphors.

References

  1. 1.
    L. Zhao, D. Wang, D. Meng, Synthesis and VUV photoluminescence of Y2O3:Eu3+ by doping different Ions”. Optik-Int. J. Light Electron Optics. 156, 8–12 (2018).  https://doi.org/10.1016/j.ijleo.2017.10.140 CrossRefGoogle Scholar
  2. 2.
    H. Eilers, Effect of particle/grainsizeon theoptical properties of Y2O3: Er,Yb., J. Alloys Compd. 474(1–2), 569–572 (2009)CrossRefGoogle Scholar
  3. 3.
    S.H. Shin, J.H. Kang, D.Y. Jeon, S.H. Choi, S.H. Lee, Y.C. You, D.S. Zang, Cathodo-luminescence change of Y2O3: Eu phosphors by incorporation of Zn ions. Solid State Commun. 135, 30–33 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Liu, J. Zhang, Z. Wang, Z. Shi, Y. Zhou, X. Ren, Q. Yan, Refinement and homogenization of M7C3 carbide in hypereutectic Fe-Cr-C coating by Y2O3 and TiC. Mater. Charact. 132, 41–45, (2017).  https://doi.org/10.1016/S1002-0721(14)60469-5 CrossRefGoogle Scholar
  5. 5.
    S. Wanchang, Z. Pei, L.I. Pan, S.H.E. Xiaolin, Z.H.A.O. Kun, Phase evolution, microstructure and properties of Y2O3-doped TiCN-based cermets. J. Rare Eearth 33(8), 867 (2015).  https://doi.org/10.1016/S1002-0721(14)60498-1 CrossRefGoogle Scholar
  6. 6.
    T. lgarashi, M. Ihara, M. Kusunoki, M. Ohno, Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor. J I. Appl. Phys. Lett. 76, 1549 (2000)CrossRefGoogle Scholar
  7. 7.
    K. Gupta, R.M. Kadam, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, A comparative comparative investigation of Ce3+–/Dy3+– and Eu2+– doped LiAlO2 phosphors for high dose radiation dosimetry: explanation of defect recombination mechanism using PL,TL and EPR study. J. Lumin. 188, 81–95 (2017).  https://doi.org/10.1016/j.jlumin.2017.03.046 CrossRefGoogle Scholar
  8. 8.
    W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide Aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424–4442 (1968)CrossRefGoogle Scholar
  9. 9.
    Q. Liu, Y. Liu, Z. Yang, Y. Han, X. Li, G. Fu, Multi wavelength excited white-emitting phosphor Dy3+ activated Ba3Bi(PO4)3. J. Alloys Compd. 515, 16–19 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Dutta, S. Som, S.K. Sharma, Luminescence and photometric characterization of K+ compensated CaMoO4:Dy3+ nanophosphors. Dalton Trans. 42, 54 (2013).  https://doi.org/10.1039/c3dt50780g CrossRefGoogle Scholar
  11. 11.
    Z. Ming, L.I. Xin-hai, H. Qi-yang, W. Zhi-xing, G.Hua-jun. Preparation methods of novel structural Y2O3:Eu3+. Rare Metal Mate. Eng. 37(1), 2065–2068 (2008)Google Scholar
  12. 12.
    S. Jayasudha, K. Madhukumar, C.M.K. Nair, G. Rashmi, S. Nair.Rajesh, T.S. Elias, TL dosimetric characterization of gamma irradiated SrSO4:Eu phosphors. J. Lumin. 183, 259–265 (2017).  https://doi.org/10.1016/j.jlumin.2016.11.044 CrossRefGoogle Scholar
  13. 13.
    S. Ghorbania, M.R. Loghman-Estarkib, R. Shoja Razavib, A. Alhaji, A new method for the fabrication of MgO- Y2O3 composite nanopowder at low temperature based on bioorganic material. Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2017.11.025 Google Scholar
  14. 14.
    Y. Li, Y.M. Zhang, G.Y. Hong, Y Yu. Upconversion luminescence of Y2O3: Er3+, Yb3+ nanoparticles prepared by a homogeneous precipita- tion method. J. Rare Earths 26, 450 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Katyayan, S. Agrawal, Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications. J. Mater. Sci. Mater. Electron. 28, 18442–18454 (2017).  https://doi.org/10.1007/s10854-017-7791-8 CrossRefGoogle Scholar
  16. 16.
    J.A. Capobianco, F. Vetrone, T. D’Alesio, G. Tessari, A. Speghini, M. Bettinelli, Optical spectroscopy of nanocrystalline cubic Y2O3: Er3+ obtained by combustion. Phys. Chem. Chem. Phys. 2, 3203–3207 (2000)CrossRefGoogle Scholar
  17. 17.
    S. Som, M. Chowdhury, S.K. Sharma, Band gap and trapping parameters of color tunable Yb3+ /Er3+ codoped Y2O3 upconversion phosphor synthesized by combustion route. J Mater Sci. 49, 858–867 (2014).  https://doi.org/10.1007/s10853-013-7769-8 CrossRefGoogle Scholar
  18. 18.
    S. Som, P. Mitra, V. Kumar, V. Kumar, J.J. Terblans, H.C. Swart, S.K. Sharma, The energy transfer phenomena and colour tunability in Y2O3S: Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans. 43(26), 9860–9871 (2014)CrossRefGoogle Scholar
  19. 19.
    P.A. Raymundo-Pereira, D.A. Ceccato, A.G.B. Junior, M.F.S. Teixeira, S.A.M. Lima, A.M. Pires, Study on the structural and electrocatalytic properties of Ba2+-and Eu3+-doped silica xerogels as sensory platforms. RSC Adv. 6, 104529–104536 (2016).  https://doi.org/10.1039/C6RA22508J CrossRefGoogle Scholar
  20. 20.
    C. Zhong, H. Ji, R. Li, J. Wang, Z. Li, X. Sun, Facile preparation and fluorescence enhancement of yolk-like Ag@Y2O3:Yb3+,Tm3+ hollow structured composite. RSC Adv. Compos. (2014).  https://doi.org/10.1039/c3ra45464a.Google Scholar
  21. 21.
    F. Yang, L. Qiao, H. Ren, F. Yan, Z. Xie, “Synthesis and luminescence properties of color-tunable Dy3+/Eu3+: CeAlON phosphors. Ceram. Int. 43(11), 8406–8410 (2017).  https://doi.org/10.1016/j.ceramint.2017.03.187 CrossRefGoogle Scholar
  22. 22.
    Y. Liu, G. Liu, X. Dong, J. Wang, W. Yu, Tunable photoluminescence and magnetic properties of Dy3+ and Eu3+ doped GdVO4 multifunctional phosphors. Phys. Chem.Chem. Phys. 17, 2663 (2015)Google Scholar
  23. 23.
    Y. Zhu, G. Zheng, Z. Dai, L. Zhang, J. Mu, Core–shell structure and luminescence of SrMoO4:Eu3+(10%) phosphors. J. Mater. Sci. Technol. 32, 1361–1371 (2016).  https://doi.org/10.1016/j.jmst.2016.04.018 CrossRefGoogle Scholar
  24. 24.
    Y.N. Zhu, G.H. Zheng, X. Xin, R. Zhuang, L.Y. Zhang, Strong luminescence enhancement of Li doped Y2O3:5%Eu3 + phosphors. J. Mater. Sci. Mater. Electron. 28, 1485–1488 (2017).  https://doi.org/10.1007/s10854-016-5685-9 CrossRefGoogle Scholar
  25. 25.
    V.M. Lojpur, M.D. PSAhrenkiel, Dramićanin, Color-tunableup-conversion emission inY2O3: Yb3+,Er3+nanoparticlesprepared by polymer complex solutionmethod. Nanoscale Res. Lett. 8, 131 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Katyayan, S. Agrawal, Dynamics of concentration quenching in Eu3+ and Tb3+ doped calcium dioxide-oxo-zirconium perovskite. J Mater Sci.  https://doi.org/10.1007/s10854-017-8156-z
  27. 27.
    L.Y. Zhang, W.W. Fu, G.H. Zheng, Z.X. Dai, Y.N. Zhu, J.J. Mu, Morphology and luminescent properties of SrMoO4:Eu3+, Dy3+. J. Mater. Sci. Mater. Electron. 27, 5164–5174 (2016).  https://doi.org/10.1007/s10854-016-4409-5 CrossRefGoogle Scholar
  28. 28.
    L. Tingqiao, L.H.R. Hussin, Z. Ibrahim, K. Deraman, H.O. Lintang, Effects of Eu3+ and Dy3+ doping or co-doping on optical and structural properties of BaB2Si2O8 phosphor for white LED applications. J. Rare Earths 34(1), 21 (2016).  https://doi.org/10.1016/S1002-0721(14)60573-1 CrossRefGoogle Scholar
  29. 29.
    L. Yongqiang, Z. Lingyun, D. Zhenxiang, Z. Ganhong, Z. Yanan, M. Yongqing, Effect of li content, deposition time and solution concentration on morphology and photoluminescence properties of Y 2 O 3: 5%Eu 3+, x %Li+ thin film. Rare Met. Mater. Eng. 46, 1524–1529 (2017).  https://doi.org/10.1016/S1875-5372(17)30158-3 CrossRefGoogle Scholar
  30. 30.
    T.S. Atabaev, Y.H. Hwang, H.K. Kim, Color-tunable properties of Eu3+ and Dy3+-codoped Y2O3 phosphor particles. Nanoscale Res. Lett. 7(1), 556 (2012)CrossRefGoogle Scholar
  31. 31.
    D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  32. 32.
    V.R. Bandi, B.K. Grandhe, H.J. Woo, K.W. Jang, D.S. Shin, S.S. Yi, J.H. Jeong, Luminescence and energy transfer of Eu3+ or/and Dy3+ co-doped inSr3AlO4F phosphors with NUV excitation for WLEDs. J. Alloy. Compd. 538, 85–90 (2012)CrossRefGoogle Scholar
  33. 33.
    V. Dubey, J. Kaur, S. Agrawal, N.S. Suryanarayana, K.V.R. Murthy, Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO3: Eu3+ phosphor. Superlattices Microstruct. 67, 156–171 (2014)CrossRefGoogle Scholar
  34. 34.
    C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142e4 (1992)Google Scholar
  35. 35.
    R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena. (World Scientific, Singapore, 1997)CrossRefGoogle Scholar
  36. 36.
    D.V. MChandrasekhar, N. Sunitha, H. Dhananjaya, S.C. Nagabhushana, B.M. Sharma, C. Nagabhushana, Shivakumara, R.P.S. Chakradhar, Thermoluminescence response in gamma and UV irradiated Dy2O3 nanophosphor. J. Lumin. 132(7), 1798–1806 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Som, M. Chowdhury, S.K. Sharma, Kinetic parameters of g-irradiated Y2O3 phosphors: effect of doping/codoping and heating rate. Radiat. Phys. Chem. 110, 51–58 (2015)CrossRefGoogle Scholar
  38. 38.
    N.J. Shivaramu, K.R. Nagabhushana, B.N. Lakshminarasappa, F. Singh, Synthesis characterization and luminescence studies of gamma irradiated nanocrystalline yttrium oxide. Spectrochimica Acta A 154, 220–231 (2016)CrossRefGoogle Scholar
  39. 39.
    D Afouxenidi, G.S. Polymeris, N.C. Tsirliganis, G. Kitis, Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiat. Prot. Dosim. (2011).  https://doi.org/10.1093/rpd/ncr315 Google Scholar
  40. 40.
    M. Chowdhury, S.K. Sharma, S.P. Lochab, Thermoluminescence glow curve analysis of g-irradiated Eu3+ doped SnO2 composites. Ceram. Int. 42, 5472–5478 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Botterman, J.J. Joos, P.F. Smet, Trapping and detrapping inSrAl2O4:Eu,Dy persistent phosphors: influence of excitation wavelength and temperature. Phys. Rev. B 90, 085147 (2014)CrossRefGoogle Scholar
  42. 42.
    D. Hagemann, S. Lovy, S. Yoon, N. Pokrant, B. Gartmann, J. Walfort, Bierwagen, Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+. J. Lumin. 170, 299–304 (2016).  https://doi.org/10.1016/j.jlumin.2015.10.035 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology, RaipurRaipurIndia

Personalised recommendations