Skip to main content

Advertisement

Log in

Luminescent properties of Eu3+ co-doped Y2O3: Dy3+ phosphors synthesized via ceramic route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Eu3+ co-doped Y2O3: Dy3+ phosphors were synthesized by solid-state reaction method, also known as a ceramic route. The properties of synthesized phosphors were studied with the help of PXRD, SEM, EDX, FTIR, Photoluminescence (PL) spectra, CIE coordinates and Thermoluminescent (TL) spectra. The PL spectra exhibit emissions at 486, 588, 596, 610, 681 and 693 nm due to the energy transfer between dopant ions. The blue emission is dominated due to dysprosium ions. The TL spectra were recorded for synthesized phosphors irradiated by UV and γ radiation. For UV irradiated phosphors, TL glow peaks were obtained at 455, 490 and 549 K whereas for γ irradiated phosphors TL glow peaks were obtained at 470 and 650 K. Using deconvoluted TL curves, kinetic parameters were computed by peak shape method. Second order kinetics were obtained with activation energy values varying from 7.553 × 10− 1 to 11.10 × 10− 1 eV for UV irradiated phosphors and 11.152 × 10− 1 to 15.252 × 10− 1 eV for γ irradiated phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Zhao, D. Wang, D. Meng, Synthesis and VUV photoluminescence of Y2O3:Eu3+ by doping different Ions”. Optik-Int. J. Light Electron Optics. 156, 8–12 (2018). https://doi.org/10.1016/j.ijleo.2017.10.140

    Article  CAS  Google Scholar 

  2. H. Eilers, Effect of particle/grainsizeon theoptical properties of Y2O3: Er,Yb., J. Alloys Compd. 474(1–2), 569–572 (2009)

    Article  CAS  Google Scholar 

  3. S.H. Shin, J.H. Kang, D.Y. Jeon, S.H. Choi, S.H. Lee, Y.C. You, D.S. Zang, Cathodo-luminescence change of Y2O3: Eu phosphors by incorporation of Zn ions. Solid State Commun. 135, 30–33 (2005)

    Article  CAS  Google Scholar 

  4. S. Liu, J. Zhang, Z. Wang, Z. Shi, Y. Zhou, X. Ren, Q. Yan, Refinement and homogenization of M7C3 carbide in hypereutectic Fe-Cr-C coating by Y2O3 and TiC. Mater. Charact. 132, 41–45, (2017). https://doi.org/10.1016/S1002-0721(14)60469-5

    Article  CAS  Google Scholar 

  5. S. Wanchang, Z. Pei, L.I. Pan, S.H.E. Xiaolin, Z.H.A.O. Kun, Phase evolution, microstructure and properties of Y2O3-doped TiCN-based cermets. J. Rare Eearth 33(8), 867 (2015). https://doi.org/10.1016/S1002-0721(14)60498-1

    Article  CAS  Google Scholar 

  6. T. lgarashi, M. Ihara, M. Kusunoki, M. Ohno, Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor. J I. Appl. Phys. Lett. 76, 1549 (2000)

    Article  Google Scholar 

  7. K. Gupta, R.M. Kadam, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, A comparative comparative investigation of Ce3+–/Dy3+– and Eu2+– doped LiAlO2 phosphors for high dose radiation dosimetry: explanation of defect recombination mechanism using PL,TL and EPR study. J. Lumin. 188, 81–95 (2017). https://doi.org/10.1016/j.jlumin.2017.03.046

    Article  CAS  Google Scholar 

  8. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide Aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424–4442 (1968)

    Article  CAS  Google Scholar 

  9. Q. Liu, Y. Liu, Z. Yang, Y. Han, X. Li, G. Fu, Multi wavelength excited white-emitting phosphor Dy3+ activated Ba3Bi(PO4)3. J. Alloys Compd. 515, 16–19 (2012)

    Article  CAS  Google Scholar 

  10. S. Dutta, S. Som, S.K. Sharma, Luminescence and photometric characterization of K+ compensated CaMoO4:Dy3+ nanophosphors. Dalton Trans. 42, 54 (2013). https://doi.org/10.1039/c3dt50780g

    Article  CAS  Google Scholar 

  11. Z. Ming, L.I. Xin-hai, H. Qi-yang, W. Zhi-xing, G.Hua-jun. Preparation methods of novel structural Y2O3:Eu3+. Rare Metal Mate. Eng. 37(1), 2065–2068 (2008)

    Google Scholar 

  12. S. Jayasudha, K. Madhukumar, C.M.K. Nair, G. Rashmi, S. Nair.Rajesh, T.S. Elias, TL dosimetric characterization of gamma irradiated SrSO4:Eu phosphors. J. Lumin. 183, 259–265 (2017). https://doi.org/10.1016/j.jlumin.2016.11.044

    Article  CAS  Google Scholar 

  13. S. Ghorbania, M.R. Loghman-Estarkib, R. Shoja Razavib, A. Alhaji, A new method for the fabrication of MgO- Y2O3 composite nanopowder at low temperature based on bioorganic material. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.11.025

    Article  Google Scholar 

  14. Y. Li, Y.M. Zhang, G.Y. Hong, Y Yu. Upconversion luminescence of Y2O3: Er3+, Yb3+ nanoparticles prepared by a homogeneous precipita- tion method. J. Rare Earths 26, 450 (2008)

    Article  Google Scholar 

  15. S. Katyayan, S. Agrawal, Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications. J. Mater. Sci. Mater. Electron. 28, 18442–18454 (2017). https://doi.org/10.1007/s10854-017-7791-8

    Article  CAS  Google Scholar 

  16. J.A. Capobianco, F. Vetrone, T. D’Alesio, G. Tessari, A. Speghini, M. Bettinelli, Optical spectroscopy of nanocrystalline cubic Y2O3: Er3+ obtained by combustion. Phys. Chem. Chem. Phys. 2, 3203–3207 (2000)

    Article  CAS  Google Scholar 

  17. S. Som, M. Chowdhury, S.K. Sharma, Band gap and trapping parameters of color tunable Yb3+ /Er3+ codoped Y2O3 upconversion phosphor synthesized by combustion route. J Mater Sci. 49, 858–867 (2014). https://doi.org/10.1007/s10853-013-7769-8

    Article  CAS  Google Scholar 

  18. S. Som, P. Mitra, V. Kumar, V. Kumar, J.J. Terblans, H.C. Swart, S.K. Sharma, The energy transfer phenomena and colour tunability in Y2O3S: Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans. 43(26), 9860–9871 (2014)

    Article  CAS  Google Scholar 

  19. P.A. Raymundo-Pereira, D.A. Ceccato, A.G.B. Junior, M.F.S. Teixeira, S.A.M. Lima, A.M. Pires, Study on the structural and electrocatalytic properties of Ba2+-and Eu3+-doped silica xerogels as sensory platforms. RSC Adv. 6, 104529–104536 (2016). https://doi.org/10.1039/C6RA22508J

    Article  CAS  Google Scholar 

  20. C. Zhong, H. Ji, R. Li, J. Wang, Z. Li, X. Sun, Facile preparation and fluorescence enhancement of yolk-like Ag@Y2O3:Yb3+,Tm3+ hollow structured composite. RSC Adv. Compos. (2014). https://doi.org/10.1039/c3ra45464a.

    Article  Google Scholar 

  21. F. Yang, L. Qiao, H. Ren, F. Yan, Z. Xie, “Synthesis and luminescence properties of color-tunable Dy3+/Eu3+: CeAlON phosphors. Ceram. Int. 43(11), 8406–8410 (2017). https://doi.org/10.1016/j.ceramint.2017.03.187

    Article  CAS  Google Scholar 

  22. Y. Liu, G. Liu, X. Dong, J. Wang, W. Yu, Tunable photoluminescence and magnetic properties of Dy3+ and Eu3+ doped GdVO4 multifunctional phosphors. Phys. Chem.Chem. Phys. 17, 2663 (2015)

    Google Scholar 

  23. Y. Zhu, G. Zheng, Z. Dai, L. Zhang, J. Mu, Core–shell structure and luminescence of SrMoO4:Eu3+(10%) phosphors. J. Mater. Sci. Technol. 32, 1361–1371 (2016). https://doi.org/10.1016/j.jmst.2016.04.018

    Article  CAS  Google Scholar 

  24. Y.N. Zhu, G.H. Zheng, X. Xin, R. Zhuang, L.Y. Zhang, Strong luminescence enhancement of Li doped Y2O3:5%Eu3 + phosphors. J. Mater. Sci. Mater. Electron. 28, 1485–1488 (2017). https://doi.org/10.1007/s10854-016-5685-9

    Article  CAS  Google Scholar 

  25. V.M. Lojpur, M.D. PSAhrenkiel, Dramićanin, Color-tunableup-conversion emission inY2O3: Yb3+,Er3+nanoparticlesprepared by polymer complex solutionmethod. Nanoscale Res. Lett. 8, 131 (2013)

    Article  Google Scholar 

  26. S. Katyayan, S. Agrawal, Dynamics of concentration quenching in Eu3+ and Tb3+ doped calcium dioxide-oxo-zirconium perovskite. J Mater Sci. https://doi.org/10.1007/s10854-017-8156-z

  27. L.Y. Zhang, W.W. Fu, G.H. Zheng, Z.X. Dai, Y.N. Zhu, J.J. Mu, Morphology and luminescent properties of SrMoO4:Eu3+, Dy3+. J. Mater. Sci. Mater. Electron. 27, 5164–5174 (2016). https://doi.org/10.1007/s10854-016-4409-5

    Article  CAS  Google Scholar 

  28. L. Tingqiao, L.H.R. Hussin, Z. Ibrahim, K. Deraman, H.O. Lintang, Effects of Eu3+ and Dy3+ doping or co-doping on optical and structural properties of BaB2Si2O8 phosphor for white LED applications. J. Rare Earths 34(1), 21 (2016). https://doi.org/10.1016/S1002-0721(14)60573-1

    Article  CAS  Google Scholar 

  29. L. Yongqiang, Z. Lingyun, D. Zhenxiang, Z. Ganhong, Z. Yanan, M. Yongqing, Effect of li content, deposition time and solution concentration on morphology and photoluminescence properties of Y 2 O 3: 5%Eu 3+, x %Li+ thin film. Rare Met. Mater. Eng. 46, 1524–1529 (2017). https://doi.org/10.1016/S1875-5372(17)30158-3

    Article  Google Scholar 

  30. T.S. Atabaev, Y.H. Hwang, H.K. Kim, Color-tunable properties of Eu3+ and Dy3+-codoped Y2O3 phosphor particles. Nanoscale Res. Lett. 7(1), 556 (2012)

    Article  Google Scholar 

  31. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  CAS  Google Scholar 

  32. V.R. Bandi, B.K. Grandhe, H.J. Woo, K.W. Jang, D.S. Shin, S.S. Yi, J.H. Jeong, Luminescence and energy transfer of Eu3+ or/and Dy3+ co-doped inSr3AlO4F phosphors with NUV excitation for WLEDs. J. Alloy. Compd. 538, 85–90 (2012)

    Article  CAS  Google Scholar 

  33. V. Dubey, J. Kaur, S. Agrawal, N.S. Suryanarayana, K.V.R. Murthy, Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO3: Eu3+ phosphor. Superlattices Microstruct. 67, 156–171 (2014)

    Article  CAS  Google Scholar 

  34. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142e4 (1992)

    Google Scholar 

  35. R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena. (World Scientific, Singapore, 1997)

    Book  Google Scholar 

  36. D.V. MChandrasekhar, N. Sunitha, H. Dhananjaya, S.C. Nagabhushana, B.M. Sharma, C. Nagabhushana, Shivakumara, R.P.S. Chakradhar, Thermoluminescence response in gamma and UV irradiated Dy2O3 nanophosphor. J. Lumin. 132(7), 1798–1806 (2012)

    Article  Google Scholar 

  37. S. Som, M. Chowdhury, S.K. Sharma, Kinetic parameters of g-irradiated Y2O3 phosphors: effect of doping/codoping and heating rate. Radiat. Phys. Chem. 110, 51–58 (2015)

    Article  CAS  Google Scholar 

  38. N.J. Shivaramu, K.R. Nagabhushana, B.N. Lakshminarasappa, F. Singh, Synthesis characterization and luminescence studies of gamma irradiated nanocrystalline yttrium oxide. Spectrochimica Acta A 154, 220–231 (2016)

    Article  CAS  Google Scholar 

  39. D Afouxenidi, G.S. Polymeris, N.C. Tsirliganis, G. Kitis, Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiat. Prot. Dosim. (2011). https://doi.org/10.1093/rpd/ncr315

    Article  Google Scholar 

  40. M. Chowdhury, S.K. Sharma, S.P. Lochab, Thermoluminescence glow curve analysis of g-irradiated Eu3+ doped SnO2 composites. Ceram. Int. 42, 5472–5478 (2016)

    Article  CAS  Google Scholar 

  41. J. Botterman, J.J. Joos, P.F. Smet, Trapping and detrapping inSrAl2O4:Eu,Dy persistent phosphors: influence of excitation wavelength and temperature. Phys. Rev. B 90, 085147 (2014)

    Article  Google Scholar 

  42. D. Hagemann, S. Lovy, S. Yoon, N. Pokrant, B. Gartmann, J. Walfort, Bierwagen, Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+. J. Lumin. 170, 299–304 (2016). https://doi.org/10.1016/j.jlumin.2015.10.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, T., Agrawal, S. Luminescent properties of Eu3+ co-doped Y2O3: Dy3+ phosphors synthesized via ceramic route. J Mater Sci: Mater Electron 29, 7832–7841 (2018). https://doi.org/10.1007/s10854-018-8782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8782-0

Navigation