Topochemical synthesis of ultrathin nanosheet-constructed Fe3O4 hierarchical structures as high-performance anode for Li-ion batteries

  • Fei-Xiang Ma
  • Xue-Yin Sun
  • Bao-You Zhang
  • Shu-Chao Sun
  • Chang Zhou
  • Liang Zhen
  • Cheng-Yan Xu


Two-dimensional nanosheets and their assembles have attracted considerable attention as high-performance anode materials for Li-ion batteries because of their short transport lengths and robust structures. In this work, Fe3O4 hierarchical structures assembled by porous ultrathin nanosheets are prepared from the topochemical conversion of Fe-glycolate precursor obtained via a facile refluxing process. The flower-like hierarchical nanostructures have a size of ~ 2.5 µm constructed from ultrathin nanosheet building blocks with thickness of ca. 10 nm. When used as an anode electrode, the as-prepared Fe3O4 hierarchical nanostructures demonstrate excellent electrochemical properties with a reversible and stable capacity as high as 964.3 mAh g−1 at 500 mA g−1 after 100 cycles, and superior rate capability of 487 mAh g−1 at a high current density of 8 A g−1.



The authors greatly appreciate Prof. X.W. Lou and Dr. Le Yu at Nanyang Technological University for kindly support to this work.

Supplementary material

10854_2018_8779_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1. The Supporting Information is available online including FE-SEM and TEM images of Fe-glycolate precursor, SEM images of Fe-glycolate precursor without PVP, TGA curve and BET analysis of Fe3O4 hierarchical structures. (DOCX 4425 KB)


  1. 1.
    D. Chen, L. Peng, Y. Yuan, Y. Zhu, Z. Fang, C. Yan, G. Chen, R. Shahbazian-Yassar, J. Lu, K. Amine, G. Yu, Nano Lett. 17, 3907 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, X. Peng, Appl. Mater. Today. 8, 104 (2017)CrossRefGoogle Scholar
  3. 3.
    D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S.V. Savilov, J. Lin, H.J. Fan, Z.X. Shen, Nat. Commun. 7, 12122 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Peng, Y. Zhu, D. Chen, R.S. Ruoff, G. Yu, Adv. Energy Mater. 6, 1600025 (2016)CrossRefGoogle Scholar
  5. 5.
    W. Yang, X. Zhang, Y. Xie, Nano Today. 11, 793 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Ge, J. Lei, R.N. Zare, Nat. Nanotechnol. 7, 428 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Wang, A.L. Rogach, Chem. Mater. 26, 123 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen, X. Zhang, G. Yu, Chem. Mater. 28, 5753 (2016)CrossRefGoogle Scholar
  9. 9.
    J.-E. Kim, J.-H. Oh, M. Kotal, N. Koratkar, I.-K. Oh, Nano Today. 14, 100 (2017)CrossRefGoogle Scholar
  10. 10.
    A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Energy Environ. Sci. 6, 1476 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Xia, D. Chao, C.F. Ng, J. Lin, Z. Fan, H. Zhang, Z.X. Shen, H.J. Fan, Mater. Horiz. 2, 237 (2015)CrossRefGoogle Scholar
  12. 12.
    Q. Wu, J. Xu, X. Yang, F. Lu, S. He, J. Yang, H.J. Fan, M. Wu, Adv. Energy Mater. 5, 1401756 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Yu, H. Hu, H.B. Wu, X.W. Lou, Adv. Mater. 29, 1604563 (2017)CrossRefGoogle Scholar
  14. 14.
    E. Kang, Y.S. Jung, A.S. Cavanagh, G.-H. Kim, S.M. George, A.C. Dillon, J.K. Kim, J. Lee, Adv. Funct. Mater. 21, 2430 (2011)CrossRefGoogle Scholar
  15. 15.
    M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Chem. Rev. 113, 5364 (2013)CrossRefGoogle Scholar
  16. 16.
    S.L.P. Poizot, S. Grugeon, L. Dupont, J.M. Tarascon, Nature. 407, 496 (2000)CrossRefGoogle Scholar
  17. 17.
    J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Adv. Mater. 22, E170 (2010)CrossRefGoogle Scholar
  18. 18.
    F.X. Ma, H. Hu, H.B. Wu, C.Y. Xu, Z. Xu, L. Zhen, X.W. Lou, Adv. Mater. 27, 4097 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T.A. Shifa, C. Jiang, J. Xiong, J. He, Adv. Mater. 28, 8051 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Jin, L. Dang, H. Zhang, C. Song, Q. Lu, F. Gao, Chem. Eng. J. 326, 292 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Wang, H.B. Wu, L. Zhang, X.W. Lou, Angew. Chem. Int. Ed. 52, 4165 (2013)CrossRefGoogle Scholar
  22. 22.
    J.S. Hu, L.S. Zhong, W.G. Song, L.J. Wan, Adv. Mater. 20, 2977 (2008)CrossRefGoogle Scholar
  23. 23.
    L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan, Adv. Mater. 18, 2426 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Jin, H. Deng, D. Long, X. Liu, L. Zhan, X. Liang, W. Qiao, L. Ling, J. Power Sources. 196, 3887 (2011)CrossRefGoogle Scholar
  25. 25.
    D.T. Dam, J.-M. Lee, Electrochim. Acta. 108, 617 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Wang, J. Gao, T. Guo, R. Wang, L. Guo, Y. Liu, J. Li, Chem. Commun. 48, 275 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Zhao, Y. Wang, Q. Ma, Y. Huang, X. Zhang, J. Ping, Z. Zhang, Q. Lu, Y. Yu, H. Xu, Y. Zhao, H. Zhang, Adv. Mater. 27, 7372 (2015)CrossRefGoogle Scholar
  28. 28.
    F.-X. Ma, H.B. Wu, C.-Y. Xu, L. Zhen, X.W. Lou, Nanoscale. 7, 4411 (2015)CrossRefGoogle Scholar
  29. 29.
    G. Gao, S. Lu, B. Dong, Z. Zhang, Y. Zheng, S. Ding, J. Mater. Chem. A. 3, 4716 (2015)CrossRefGoogle Scholar
  30. 30.
    S.H. Lee, S.H. Yu, J.E. Lee, A. Jin, D.J. Lee, N. Lee, H. Jo, K. Shin, T.Y. Ahn, Y.W. Kim, H. Choe, Y.E. Sung, T. Hyeon, Nano Lett. 13, 4249 (2013)CrossRefGoogle Scholar
  31. 31.
    C.N. He, S. Wu, N.Q. Zhao, C.S. Shi, E.Z. Liu, J.J. Li, ACS Nano. 7, 4459 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Yu, B. Guan, W. Xiao, X.W. Lou, Adv. Energy Mater. 5, 1500981 (2015)CrossRefGoogle Scholar
  33. 33.
    C. Ban, Z. Wu, D.T. Gillaspie, L. Chen, Y. Yan, J.L. Blackburn, A.C. Dillon, Adv. Mater. 22, E145 (2010)CrossRefGoogle Scholar
  34. 34.
    S.K. Behera, Chem. Commun. 47, 10371 (2011)CrossRefGoogle Scholar
  35. 35.
    W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, L.J. Wan, Adv. Funct. Mater. 18, 3941 (2008)CrossRefGoogle Scholar
  36. 36.
    J.S. Chen, Y. Zhang, X.W. Lou, ACS Appl. Mater. Interfaces 3, 3276 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing TechnologyHarbin Institute of TechnologyHarbinChina
  3. 3.MOE Key Laboratory of Micro-Systems and Micro-Structures ManufacturingHarbin Institute of TechnologyHarbinChina

Personalised recommendations