The effect of graphene coated Si, Ti and Nb additions on the superconducting properties of MgB2 bulks

  • H. R. Liu
  • F. Yang
  • L. H. Jin
  • S. N. Zhang
  • Q. Y. Wang
  • X. M. Xiong
  • J. Q. Feng
  • C. S. Li
  • P. X. Zhang
  • L. Zhou
Article

Abstract

The effect of graphene (G) coated Si, Ti and Nb additions on the superconducting properties of MgB2 was systematically studied. The additives were prepared by a coating process and all introduced powders were scattered and combined with graphene. The coating process was useful for the uniform distribution of additives in MgB2 samples. The additives could effectively make the refinement of MgB2 grain size, which achieved an enhancement of surface pinning. Meanwhile, the densities of all the doped samples were larger than those of pure samples, which ensured a better intergrain connection for supercurrent. Therefore, the critical current density of MgB2 with 8 wt% G coated Nb addition got a significant enhancement due to the improvement of grain connectivity and flux pinning properties.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation (Nos. 51772250, 51777172), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017ZDJC-19).

References

  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)CrossRefGoogle Scholar
  2. 2.
    X.P. Zhang, Z.S. Gao, D.L. Wang, X. Liu, X.H. Li, Y.W. Ma, E. Mossang, Supercond. Sci. Technol. 20, 57–61 (2007)CrossRefGoogle Scholar
  3. 3.
    D. Gajda, A. Zaleski, A. Morawski, T. Cetner, C.J. Thong, M.A. Rindfleisch, Supercond. Sci. Technol. 29, 085010 (2016)CrossRefGoogle Scholar
  4. 4.
    W.J. Feng, S. Zhang, Y.Q. Guo, H. Yang, T.D. Xia, Z.Q. Wei, Physica C 470, 236–239 (2010)CrossRefGoogle Scholar
  5. 5.
    T.A. Prikhna, W. Gawalek, Ya..M. Savchuk, V.E. Moshchil, N.V. Sergienko, T. Habisreuther, M. Wendt, R. Hergt, Ch Schmidt, J. Dellith, V.S. Melnikov, A. Assmann, D. Litzkendorf, P.A. Nagorny, Physica C 402, 223–233 (2004)CrossRefGoogle Scholar
  6. 6.
    B.Q. Fu, Y. Feng, G. Yan, Y. Zhao, A.K. Pradhan, C.H. Cheng, P. Ji, X.H. Liu, L. Zhou, K.F. Yau, J. Appl. Phys. 92, 734 (2002)Google Scholar
  7. 7.
    D.L. Wang, H.T. Zhang, X.P. Zhang, S.P. Tang, Y.W. Ma, H. Oguro, S. Awaji, K. Watanabe, Physica C. 508, 49–55 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Mudgel, V.P.S. Awana, H. Kishan, G.L. Bhalla, Solid State Commun. 146, 330–334 (2008)CrossRefGoogle Scholar
  9. 9.
    P. Kováč, I. Hušek, V. Skákalova, J. Meyer, E. Dobročka, M. Hirscher, S. Roth, Supercond. Sci. Technol. 20, 105–111 (2007)CrossRefGoogle Scholar
  10. 10.
    G. Bovone, M. Vignolo, C. Bernini, S. Kawale, A.S. Siri, Supercond. Sci. Technol. 27, 022001 (2014)CrossRefGoogle Scholar
  11. 11.
    S.K. Chen, K.Y. Tan, A.S. Halim, X. Xu, K.S.B. De Silva, W.K. Yeoh, S.X. Dou, A. Kursumovic, J.L. Macmanus-Driscoil, Supercond. Sci. Technol. 26, 125018 (2013)CrossRefGoogle Scholar
  12. 12.
    S.R. Ghorbanis, X.L. Wang, M.S.A. Hossain, S.X. Dou, S.I. Lee, Supercond. Sci. Technol. 23, 025019 (2010)CrossRefGoogle Scholar
  13. 13.
    W.X. Li, X. Xu, Q.H. Chen, Y. Zhang, S.H. Zhou, R. Zeng, S.X. Dou, Acta Mater. 59, 7268–7276 (2011)CrossRefGoogle Scholar
  14. 14.
    K.S.B. De Silva, X. Xu, W.X. Li, Y. Zhang, M. Rindfleisch, M. Tomsic, IEEE Trans. Appl. Supercond. 21, 2686 (2011)CrossRefGoogle Scholar
  15. 15.
    W.X. Li, X. Xu, K.S.B. De Silva, F.X. Xiang, S.X. Dou, IEEE Trans. Appl. Supercond. 23, 7000104 (2013)CrossRefGoogle Scholar
  16. 16.
    K.S.B. De Silva, X. Xu, S. Gambir, D.C.K. Wong, W.X. Li, Q.Y. Hu, IEEE Trans. Appl. Supercond. 23, 7100604 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Aldica, M. Burdusel, S. Popa, Y. Hayasak, P. Badicaa, Mater. Res. Bull. 77, 205–211 (2016)CrossRefGoogle Scholar
  18. 18.
    K.S.B. De Silva, X. Xu, S. Gambhir, X.L. Wang, W.X. Li, G.G. Wallace, S.X. Dou, Scr. Mater. 65, 634–637 (2011)CrossRefGoogle Scholar
  19. 19.
    X.L. Wang, S.H. Zhou, M.J. Qin, P.R. Munroe, S. Soltanian, H.K. Liu, S.X. Dou, Physica C. 385, 461–465 (2003)CrossRefGoogle Scholar
  20. 20.
    M.R. Cimberle, M. Novak, P. Manfrinetti, A. Palenzona, Supercond. Sci. Technol. 15, 43–47 (2002)CrossRefGoogle Scholar
  21. 21.
    B.Q. Fu, Y. Feng, Y. Zhao, A.K. Pradhan, C.H. Cheng, P. Ji, X.H. Liu, C.F. Liu, G. Yan, L. Zhou, Physica C 386, 660–662 (2003)CrossRefGoogle Scholar
  22. 22.
    N. Guclu, Mater. Chem. Phys. 10, 1016 (2006)Google Scholar
  23. 23.
    T. Yoshida, T. Naito, H. Fujishiro, IEEE Trans. Appl. Supercond. 25, 681204 (2015)Google Scholar
  24. 24.
    H.R. Liu, F. Yang, L.H. Jin, S.N. Zhang, Q.Y. Wang, X.M. Xiong, J.Q. Feng, C.S. Li, P.X. Zhang, L. Zhou, J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-017-4309-9 Google Scholar
  25. 25.
    C.P. Bean, Phys. Rev. Lett. 36, 31 (1962)Google Scholar
  26. 26.
    J. Chen, Y. Zhang, M. Zhang, B.W. Yao, Y.G. Li, L. Huang, C. Li, G.Q. Shi, Chem. Sci. 7, 1874–1881 (2016)CrossRefGoogle Scholar
  27. 27.
    M.N. Dang, T.D.T. Ung, H.N. Phan, Q.D. Truong, T.H. Bui, M.N. Phan, L.Q. Nguyen, P.D. Tran, Mater. Lett. 194, 145–148 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Sudesh, C. Das, G.D. Bernhard, Varma, Physica C 509, 49–55 (2015)CrossRefGoogle Scholar
  29. 29.
    D. Goto, T. Machi, Y. Zhao, N. Koshizuka, M. Murakami, S. Arai, Physica C 392, 272–275 (2003)CrossRefGoogle Scholar
  30. 30.
    J. Peng, Q. Cai, F. Cheng, Z.Q. Ma, C. Li, Y. Xin, Y.C. Liu, J. Alloys Compd. 694, 24–29 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. R. Liu
    • 1
  • F. Yang
    • 2
  • L. H. Jin
    • 2
  • S. N. Zhang
    • 1
  • Q. Y. Wang
    • 2
  • X. M. Xiong
    • 2
  • J. Q. Feng
    • 2
  • C. S. Li
    • 2
  • P. X. Zhang
    • 1
    • 2
  • L. Zhou
    • 1
    • 2
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Northwest Institute for Nonferrous Metal ResearchXi’anChina

Personalised recommendations