Enhanced performance of dye-sensitized solar cells based on meso/macroporous phosphotungstic acid/TiO2 photoanodes

  • Gege Li
  • Xuemin Yan
  • Ping Mei
  • Yu Jiang
  • Yan Zhang
  • Fei Deng
  • Yan Xiong
  • Haolin Tang


A hierarchically meso/macroporous phosphotungstic acid/TiO2 (HPW/TiO2) composite has been synthesized and introduced into the photoanode of dye-sensitized solar cells (DSSCs). The performance of the cell with hierarchically HPW/TiO2 modified photoanode was enhanced compared to the pristine P25 cell. When the mass percentage of HPW/TiO2 is 15 wt% in the photoanode, an increase of 28.2% improvement in the conversion efficiency are obtained. The interfacial layer modified by HPW can retard the recombination of electrons and broad the absorption to the visible region; the introduction of hierarchically porous structure in the photoanode can increase light scattering and dye adsorption. All these merits are responsible for an efficient enhancement in energy conversion efficiency.



This work was financially supported by National Natural Science Foundation of China (51472034 and 61106127), Doctoral Scientific Research Startup Foundation of Yangtze University (YU)(801090010137).

Supplementary material

10854_2018_8767_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 35 KB)


  1. 1.
    B. O’Regan, M. Gratzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    M.K. Nazeeruddin, A. Kay, I. Rodicio, R.H. Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087 (2009)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, E. Uchaker, S.L. .Candelaria, G. Cao, Chem. Soc. Rev. 42, 3127 (2013)CrossRefGoogle Scholar
  5. 5.
    S.M. Wang, L. Liu, W.L. Chen, E.B. Wang, Z.M. Su, Dalton Trans. 42, 2691 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Tian, Z.H. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43, 6920 (2014)CrossRefGoogle Scholar
  7. 7.
    X.M. Song, J.M. Wu, M.Z. Tang, B. Qi, M. Yan, J. Phys. Chem. C 112, 19484 (2008)CrossRefGoogle Scholar
  8. 8.
    H. Zhang, G. Wang, D. Chen, X.J. Lv, J.H. Li, Chem. Mater. 20, 6543 (2008)CrossRefGoogle Scholar
  9. 9.
    D.R. Baker, P.V. Kamat, Adv. Funct. Mater. 19, 805 (2009)CrossRefGoogle Scholar
  10. 10.
    J.F. Zhao, G.L. Chen, S.Y. Chen, Q.Y. Ye, B.L. Hu, Z.G. Huang, J. Mater. Sci. Mater. Electron. 28, 394 (2017)CrossRefGoogle Scholar
  11. 11.
    Z.X. Sun, L. Xu, W.H. Guo, B.B. Xu, S.P. Liu, F.Y. Li, J. Phys. Chem. C 114, 5211 (2010)CrossRefGoogle Scholar
  12. 12.
    X. Yu, R. Liu, G. Zhang, RSC Adv. 3, 8351 (2013)CrossRefGoogle Scholar
  13. 13.
    S.M. Wang, L. Liu, W.L. Chen, Z.M. Su, E.B. Wang, C. Li, Ind. Eng. Chem. Res. 53, 150 (2014)CrossRefGoogle Scholar
  14. 14.
    L.H. Wang, L. Xu, Z.C. Mu, C.G. Wang, Z.X. Sun, J. Mater. Chem. 22, 23627 (2012)CrossRefGoogle Scholar
  15. 15.
    Z. Zhao, G. Liu, B. Li, L. Guo, C. Fei, Y. Wang, L. Lv, X. Liu, J. Tian, G. Cao, J. Mater. Chem. A 3, 11320 (2015)CrossRefGoogle Scholar
  16. 16.
    C.L. Hill, Chem. Rev. 98, 327 (1998)CrossRefGoogle Scholar
  17. 17.
    S.W. Li, X.L. Yu, G.J. Zhang, Y. Ma, J.N. Yao, J. Mater. Chem. 21, 2282 (2011)CrossRefGoogle Scholar
  18. 18.
    R.J. Liu, S.W. Li, X.L. Yu, G.J. Zhang, S.J. Zhang, J.N. Yao, Small 8, 1398 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003)CrossRefGoogle Scholar
  20. 20.
    S.S. Mathew, S. Ma, I. Kretzschmar, J. Mater. Res. 28, 369 (2013)CrossRefGoogle Scholar
  21. 21.
    Z. Nie, X. Zhou, Q. Zhang, G. Cao, J. Liu, Sci. Adv. Mater. 5, 1750 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Lin, A. Nattestad, H. Yu, Y. Bai, L. Wang, S.X. Dou, J.H. Kim, J. Mater. Chem. A 2, 8902 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, J. Am. Chem. Soc. 125, 6306 (2003)CrossRefGoogle Scholar
  24. 24.
    P. Yang, S.Y. Zhou, Y. Du, J.S. Li, J.H. Lei, J. Porous Mater. 24, 531 (2017)CrossRefGoogle Scholar
  25. 25.
    B.T. Holland, C.F. Blanford, T. Do, A. Stein, Chem. Mater. 11, 795 (1999)CrossRefGoogle Scholar
  26. 26.
    J. Dhainaut, J. Dacquin, A.F. Lee, K. Wilson, Green Chem. 12, 296 (2010)CrossRefGoogle Scholar
  27. 27.
    W.Q. Liu, D.X. Kou, M.L. Cai, L.H. Hu, J. Sheng, H.J. Tian, N.Q. Jiang, S.Y. Dai, J. Phys. Chem. C. 114, 9965 (2010)CrossRefGoogle Scholar
  28. 28.
    Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Adv. Funct. Mater. 18, 1654 (2008)CrossRefGoogle Scholar
  29. 29.
    F.R. Li, G.C. Wang, Y. Jiao, J.Y. Li, S.H. Xie, J. Alloy Compd. 611, 19 (2014)CrossRefGoogle Scholar
  30. 30.
    Z.Q. Li, Y.P. Que, L.E. Mo, W.C. Chen, Y. Ding, Y.M. Ma, L. Jiang, L.H. Hu, S.Y. Dai, ACS Appl. Mater. Interfaces 7, 10928 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Jeong, W. Bak, J.W. Choi, K.J. Lee, J.S. Kang, J. Kim, D.G. Kim, W.C. Yoo, Y.E. Sung, Electrochim. Acta 222, 1079 (2016)CrossRefGoogle Scholar
  32. 32.
    G. Schlichthorl, N.G. Park, A.J. Frank, J. Phys. Chem. B 103, 782 (1999)CrossRefGoogle Scholar
  33. 33.
    X.J. Lv, X.L. Mou, J.J. Wu, L.L. Zhang, F.Q. Huang, F.F. Xu, Adv. Funct. Mater. 20, 509 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Environmental EngineeringYangtze UniversityJingzhouPeople’s Republic of China
  2. 2.School of Physics and Optoelectronic EngineeringYangtze UniversityJingzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations