Skip to main content
Log in

High capacitance and long cycle-life of nitrogen doped reduced graphene oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The quality of chemically synthesized few-layered graphene, which is known as reduced graphene oxide (RGO) depends on the oxidation of graphite, effective exfoliation of graphite oxide and complete reduction of graphene oxide. Herein, we report the preparation of nitrogen doped RGO by a modified Hummer’s method using potassium manganate along with potassium permanganate to achieve improved oxidation of graphite and a small amount of bovine serum albumin as a dispersant to avoid restacking of graphene sheets. Besides reducing the agglomeration of graphene layers, bovine serum albumin also serves as a nitrogen dopant. The quality of as-prepared nitrogen doped RGO is examined by morphological and structural studies. While microscopic studies confirm the formation of thin, well dispersed RGO sheets, X-ray photoelectron spectroscopic studies confirm the doping of nitrogen in RGO. A specific surface area of 286 m2 g−1 is obtained for nitrogen doped RGO, which is mainly contributed by the basal planes and ordered mesoporosity of RGO. The capacitance properties of as-prepared nitrogen doped RGO without any conductive additive are evaluated by cyclic voltammetry and galvanostatic charge–discharge cycling. A specific capacitance of 142 F g−1 obtained at a current density 1 A g−1 is almost twice the specific capacitance obtained for commercial graphene platelet aggregates (75 F g−1). The rate performance of as-prepared nitrogen doped RGO is comparable to that of commercial graphene platelet aggregates. It is also found that nitrogen doped RGO electrode can be charged and discharged for at least 2000 cycles without fade in the capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.K. Kim, K.B. Kim, S.M. Park, K.C. Roh, Sci. Rep. 6, 21182 (2016)

    Article  CAS  Google Scholar 

  2. J.L. Xia, L.J.H. Chen, N.T. Tao, Nat. Nanotechnol. 4, 505 (2009)

    Article  CAS  Google Scholar 

  3. S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Adv. Mater. 26, 849 (2014)

    Article  CAS  Google Scholar 

  4. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkie, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)

    Article  CAS  Google Scholar 

  5. Y. Huang, J. Liang, Y. Chen, Small 8, 1805 (2012)

    Article  CAS  Google Scholar 

  6. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  CAS  Google Scholar 

  7. P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Curr. Opin. Colloid Interface Sci. 20, 329 (2015)

    Article  CAS  Google Scholar 

  8. Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, Y. Chen, Nano Res. 3, 661 (2010)

    Article  CAS  Google Scholar 

  9. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K.A. Kim, Nature 490, 192 (2012)

    Article  CAS  Google Scholar 

  10. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  CAS  Google Scholar 

  11. B.C. Brodie, Philos. Trans. R. Soc. Lond. 149, 249 (1859)

  12. W. Hummers, R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  13. M. Naoki, K. Takuya, N. Yuta, Sci. Rep. 6, 21715 (2016)

    Article  Google Scholar 

  14. J.H. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987 (2009)

    Article  CAS  Google Scholar 

  15. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. 46, 1112 (2010)

    Article  CAS  Google Scholar 

  16. J. Zhao, S. Pei, W. Ren, L. Gao, H.M. Cheng, ACS Nano 4, 5245 (2010)

    Article  CAS  Google Scholar 

  17. Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, H. Zhang, ACS Nano 5, 5038 (2011)

    Article  CAS  Google Scholar 

  18. S. Ahadian, M. Estili, V.J. Surya, J.R. Azcon, X. Liang, H. Shiku, M. Ramalingam, T. Matsue, Y. Sakka, H. Bae, K. Nakajima, Y. Kawazoe, Nanoscale 7, 6436 (2015)

    Article  CAS  Google Scholar 

  19. C.H. Wen, C. Indranil, D.G. Goodwin, H.W. Matthew, D.F. Howard, B. Dermont, R.G. Zepp, Environ. Sci. Technol. 6, 3435 (2015)

    Google Scholar 

  20. Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater. 2, 557 (1990)

    Article  CAS  Google Scholar 

  21. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  CAS  Google Scholar 

  22. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    Article  CAS  Google Scholar 

  23. J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu, K.M. Thomas, Carbon 33, 1641 (1995)

    Article  CAS  Google Scholar 

  24. P.H. Matter, L. Zhang, U.S. Ozkan, J. Catal. 239, 83 (2006)

    Article  CAS  Google Scholar 

  25. S.R. Gajjela, K. Ananthanarayanan, C. Yap, M. Gratzel, P. Balaya, Energy Environ. Sci. 3, 838 (2010)

    Article  CAS  Google Scholar 

  26. M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169 (2001)

    Article  CAS  Google Scholar 

  27. H. Zhang, T. Kuila, N.H. Kim, D.S. Yu, J.H. Lee, Carbon 69, 66 (2014)

    Article  Google Scholar 

  28. B.E. Conway, Electochemical Supercapacitors (Kluwer Academic Publishers/Plenum Press, New York, 1999), pp. 1–698

    Book  Google Scholar 

  29. J. Wang, B. Ding, L. Xu, L. Shen, H. Dou, X. Zhang, ACS Appl. Mater. Interfaces 7, 22284 (2015)

    Article  CAS  Google Scholar 

  30. S.S. Balaji, A. Elavarasan, M. Sathish, Electrochim. Acta 200, 37 (2016)

    Article  CAS  Google Scholar 

  31. K. Xia, W. Guoxu, H. Zhang, Y. Yu, L. Liu, A. Chen, J. Nanopart. Res. 19, 254 (2017)

    Article  Google Scholar 

  32. B. Jiang, C. Tian, L. Wang, L. Sun, C. Chen, X. Nong, Y. Qiao, H. Fu, Appl. Surf. Sci. 258, 3438 (2012)

    Article  CAS  Google Scholar 

  33. P. Bharathidasan, D.W. Kim, S. Devaraj, S.R. Sivakkumar, Electrochim. Acta 204, 146 (2016)

    Article  CAS  Google Scholar 

  34. C. Zheng, X.F. Zhou, H.L. Cao, G.H. Wang, Z.P. Liu, RSC Adv. 5, 10739 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Science and Engineering Research Board, Department of Science and Technology, India (SB/FT/CS-025/2014 & SB/FT/CS-007/2013) and University Grant Commission – Department of Atomic Energy Consortium for Scientific Research, India (CSR/Acctts/2015/1075) are gratefully acknowledged. We thank Dr. V. Ramanathan for Raman spectroscopic studies and SASTRA for infrastructural and instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Devaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathidasan, P., Sridhar, S., Vardhan, P.V. et al. High capacitance and long cycle-life of nitrogen doped reduced graphene oxide. J Mater Sci: Mater Electron 29, 7661–7667 (2018). https://doi.org/10.1007/s10854-018-8760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8760-6

Navigation