Advertisement

Size effects on the interfacial reaction and microstructural evolution of Sn-ball/Sn3.0Ag0.5Cu-paste/Cu joints in board-level hybrid BGA interconnection at critical reflowing temperature

  • J. Q. Huang
  • M. B. Zhou
  • S. B. Liang
  • X. P. Zhang
Article
  • 156 Downloads

Abstract

The effects of solder joint size on the interfacial reaction and microstructural evolution of Sn-ball/Sn3.0Ag0.5Cu-paste/Cu joints in board-level hybrid BGA interconnection during reflow at two critical temperatures of 217.2 and 227.0 °C were investigated comprehensively. For the joints reflowed at 217.2 °C, which is slightly higher than the melting point (217.1 °C) of Sn3.0Ag0.5Cu solder, the Sn ball does not melt, but coalesces with the melted Sn3.0Ag0.5Cu paste, regardless of change in solder joint size, and the microstructure of the mixed part of the Sn ball and Sn3.0Ag0.5Cu paste does not change significantly. In contrast, for the joints reflowed at 227.0 °C, which is nearly 5 °C lower than the melting point (231.9 °C) of Sn ball, with decrease in joint size, the Sn ball exhibits premelting behavior gradually, and the microstructure of the mixed part of the Sn ball and Sn3.0Ag0.5Cu paste varies obviously. The thickness of the Cu6Sn5 layer at the Sn3.0Ag0.5Cu-paste/Cu interface increases with decrease in size of joints reflowed at 217.2 and 227.0 °C, and the growth of the interfacial Cu6Sn5 is significantly influenced by Cu concentration distribution near the interface between the solder and intermetallic compound layer in the molten solder. The experimental data and two-dimensional finite element simulation results indicate that the Cu concentration in small joints increases faster than that in large ones, and the relatively long time influence of high Cu concentration in the small joints leads to the formation of large Cu6Sn5 grains at the interface.

Notes

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant Nos. 51405162 and 51775195, the Science and Technology Planning Project of Guangdong Province under Grant Nos. 2014A010105023 and 2016A010103010, and Fundamental Research Fund for the Central Universities (SCUT-2017ZD038).

References

  1. 1.
    T.K. Lee, W. Xie, B. Zhou, T. Bieler, K.C. Liu, J. Electron. Mater. 40, 1967 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, K. Nogita, Microelectron. Reliab. 51, 657 (2011)CrossRefGoogle Scholar
  3. 3.
    P. Arulvanan, Z.W. Zhong, Microelectron. Eng. 83, 2462 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Wang, J.J. Li, A. Gallagher, J. Wrezel, P. Towashirporn, N.Q. Zhao, Microelectron. Reliab. 52, 1475 (2012)CrossRefGoogle Scholar
  5. 5.
    D.J. Xie, D.K. Shangguan, D. Geiger, D. Gill, V. Vellppan, K. Chinniah, Head in pillow (HIP) and yield study on SIP and PoP assembly. In Proceedings of 59th Electronic Components and Technology Conference, San Diego, 26–29 May 2009, pp. 752–758Google Scholar
  6. 6.
    Y. Liu, P. Fiacco, N.C. Lee, Testing and prevention of head-in-pillow. In Proceedings of 60th Electronic Components and Technology Conference, Las Vegas, 1–4, June 2010, pp. 451–455Google Scholar
  7. 7.
    J.C. Gong, C.Q. Liu, P.P. Conway, V.V. Silberschmidt, Acta Mater. 56, 4291 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Yang, M.Y. Li, C.Q. Wang, Intermetallics 25, 86 (2012)CrossRefGoogle Scholar
  9. 9.
    D.L. Wang, Y. Yuan, L. Luo, J. Mater. Sci.: Mater. Electron. 23, 61 (2012)Google Scholar
  10. 10.
    C.E. Ho, W.Z. Hsieh, C.S. Liu, C.H. Yang, Thin Solid Films 572, 238 (2014)CrossRefGoogle Scholar
  11. 11.
    M.N. Islam, A. Sharif, Y.C. Chan, J. Electron. Mater. 34, 143 (2005)CrossRefGoogle Scholar
  12. 12.
    C.E. Ho, S.C. Yang, C.R. Kao, J. Mater. Sci.: Mater. Electron. 18, 155 (2007)Google Scholar
  13. 13.
    Y.S. Park, Y.M. Kwon, J.T. Moon, Y.W. Lee, J.H. Lee, K.W. Paik, Effects of fine size lead-free solder ball on the interfacial reactions and joint reliability. In Proceedings of the 60th Electronic Components and Technology Conference, Las Vegas, 1–4, June 2010, pp. 1346–1441Google Scholar
  14. 14.
    X.P. Li, J.M. Xia, M.B. Zhou, X. Ma, X.P. Zhang, J. Electron. Mater. 40, 2425 (2011)CrossRefGoogle Scholar
  15. 15.
    M.L. Huang, F. Yang, J. Mater. Sci.: Mater. Electron. 26, 933 (2015)Google Scholar
  16. 16.
    J.Q. Huang, M.B. Zhou, X.P. Zhang, J. Electron. Mater. 46, 1504 (2017)CrossRefGoogle Scholar
  17. 17.
    K.S. Kim, S.H. Huh, K. Suganuma, J. Alloys Compd. 352, 226 (2003)CrossRefGoogle Scholar
  18. 18.
    M. Schaefer, W. Laub, J.M. Sabee, R.A. Fournelle, P.S. Lee, J. Electron. Mater. 25, 992 (1996)CrossRefGoogle Scholar
  19. 19.
    M. Schaefer, R.A. Fournelle, J. Liang, J. Electron. Mater. 27, 1167 (1998)CrossRefGoogle Scholar
  20. 20.
    K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93, 1335 (2003)CrossRefGoogle Scholar
  21. 21.
    O.Y. Liashenko, F. Hodaj, Acta Mater. 99, 106 (2015)CrossRefGoogle Scholar
  22. 22.
    J. Shen, Y.C. Chan, S.Y. Liu, Acta Mater. 57, 5196 (2009)CrossRefGoogle Scholar
  23. 23.
    C.C. Chang, Y.W. Lin, Y.W. Wang, C.R. Kao, J. Alloys Compd. 492, 99 (2010)CrossRefGoogle Scholar
  24. 24.
    M.L. Huang, F. Yang, Sci. Rep. 4, 7117 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.L. Li, L.X. Cheng, G.Y. Li, J.H. Huang, Y. Tang, J. Alloys Compd. 697, 104 (2017)CrossRefGoogle Scholar
  26. 26.
    COMSOL, COMSOL Multiphysics users’ guide, version 5.1 (2015)Google Scholar
  27. 27.
    K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Guangdong Provincial Engineering R&D Center of Electronic Packaging Materials and ReliabilitySouth China University of TechnologyGuangzhouChina

Personalised recommendations