Skip to main content
Log in

Growth process and properties of CdS thin films prepared by chemical bath deposition at different pH values

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CdS thin films were successfully fabricated on glass substrates in different pH solutions by chemical bath deposition (CBD). The influences of pH value on the thickness, growth process, structure as well as on the optical properties of CdS film were investigated. The as-deposited films exhibited pure cubic phase structure, indicating that the pH had no significant effect on the crystal structure of CdS film. The optical transmittance spectra demonstrated that the films deposited at 11.7 and 11.8 pH exhibited relatively high transmittance in the long wavelength. And the optical band gaps decreased from 2.42 to 2.31 eV with increasing pH values. Subsequently, the growth process of CdS films was studied by analyzing the morphologies and particles sizes at different growing stages of the deposition. It was found that the particle clusters produced by homogeneous reaction acted as nucleation sites during the deposition process, and CdS preferred to grow on their surface. As a result, the sizes of clusters expanded with deposition time until a continuous film was formed, and the duration to obtain a continuous film reduced with decreasing pH values. Hence, a growth mode of CdS film on the glass substrate was proposed, i.e. the film was formed by the connection of expanded particle clusters produced by homogeneous reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.H. Mousavi, M.H. Jilavi, T.S. Müller, P.W. de Oliveira, J. Mater. Sci.: Mater. Electron. 25, 2786–2794 (2014)

    CAS  Google Scholar 

  2. S.R. Meher, D.K. Kaushik, A. Subrahmanyam, J. Mater. Sci.: Mater. Electron. 28, 6033–6046 (2017)

    CAS  Google Scholar 

  3. E. Yücel, S. Kahraman, Ceram. Int. 41, 4726–4734 (2015)

    Article  Google Scholar 

  4. H. Jun-feng, F. Gan-hua, V. Krishnakumar, L. Cheng, W. Jaegermann, J. Mater. Sci.: Mater. Electron. 24, 2695–2700 (2013)

    CAS  Google Scholar 

  5. M. Esmaeili-Zare, M. Behpour, J. Mater. Sci.: Mater. Electron. 28, 10173–10183 (2017)

    CAS  Google Scholar 

  6. R.K. Choubey, D. Desai, S.N. Kale, S. Kumar, J. Mater. Sci.: Mater. Electron. 27, 7890–7898 (2016)

    CAS  Google Scholar 

  7. H. Lu, B. Liu, S. He, J. Liu, X. Liu, B. Li, J. Zhang, W. Li, L. Wu, W. Wang, L. Feng, J. Mater. Sci.: Mater. Electron. 28, 9828–9835 (2017)

    CAS  Google Scholar 

  8. H. Derin, K. Kantarlı, Surf. Interface Anal. 41, 61–68 (2009)

    Article  CAS  Google Scholar 

  9. E. Feldmeier, A. Fuchs, J. Schaffner, H.-J. Schimper, A. Klein, W. Jaegermann, Thin Solid Films 519, 7596–7599 (2011)

    Article  CAS  Google Scholar 

  10. A. Slonopas, N. Alijabbari, C. Saltonstall, T. Globus, P. Norris, Electrochim. Acta 151, 140–149 (2015)

    Article  CAS  Google Scholar 

  11. S. Lee, E.S. Lee, T.Y. Kim, J.S. Cho, Y.J. Eo, J.H. Yun, A. Cho, Sol. Energ. Mat. Sol. C 141, 299–308 (2015)

    Article  CAS  Google Scholar 

  12. P. O’Brien, J. McAleese, J. Mater. Chem. 8, 2309–2314 (1998)

    Article  Google Scholar 

  13. M. Cao, Y. Sun, J. Wu, X. Chen, N. Dai, J. Alloy. Compd. 508, 297–300 (2010)

    Article  CAS  Google Scholar 

  14. S. Hariech, M. Aida, H. Moualkia, Mat. Sci. Semicond. Proc. 15, 181–186 (2012)

    Article  CAS  Google Scholar 

  15. T. Chu, S.S. Chu, N. Schultz, C. Wang, C. Wu, J. Electrochem. Soc. 139, 2443–2446 (1992)

    Article  CAS  Google Scholar 

  16. Y. Ohtake, T. Okamoto, A. Yamada, M. Konagai, K. Saito, Sol. Energy Mat. Sol. C 49, 269–275 (1997)

    Article  CAS  Google Scholar 

  17. M. Cao, L. Li, B.L. Zhang, J. Huang, K. Tang, H. Cao, Y. Sun, Y. Shen, J. Alloy. Compd. 530, 81–84 (2012)

    Article  CAS  Google Scholar 

  18. S. Alhammadi, K. Moon, H. Park, W.K. Kim, Thin Solid Films 625, 56–61 (2017)

    Article  CAS  Google Scholar 

  19. E. Yücel, O. Şahin, Ceram. Int. 42, 6399–6407 (2016)

    Article  Google Scholar 

  20. F. Ballipinar, A.C. Rastogi, J. Appl. Phys. 121, 035302 (2017)

    Article  Google Scholar 

  21. H. Moualkia, G. Rekhila, M. Izerrouken, A. Mahdjoub, M. Trari, Mat. Sci. Semicond. Proc. 21, 186–193 (2014)

    Article  CAS  Google Scholar 

  22. Y.S. Lo, R.K. Choubey, W.C. Yu, W.T. Hsu, C.W. Lan, Thin Solid Films 520, 217–223 (2011)

    Article  CAS  Google Scholar 

  23. H. Moualkia, S. Hariech, M.S. Aida, N. Attaf, E.L. Laifa, J. Phys. D 42, 135404 (2009)

    Article  Google Scholar 

  24. E. Yücel, N. Güler, Y. Yücel, J. Alloy. Compd. 589, 207–212 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Education of Guangdong Province, China (Grant No. 2013CXZDA002), Guangdong Science and Technology Department, China (Grant No. 2014A010106009), National Natural Science Foundation of China (No. 51402103) and Hunan Natural Science Foundation of China (No. 2015JJ3040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijiang Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jiang, J., Wang, W. et al. Growth process and properties of CdS thin films prepared by chemical bath deposition at different pH values. J Mater Sci: Mater Electron 29, 7637–7643 (2018). https://doi.org/10.1007/s10854-018-8756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8756-2

Navigation