Growth process and properties of CdS thin films prepared by chemical bath deposition at different pH values

  • Linquan Zhang
  • Jinchun Jiang
  • Wei Wang
  • Xiaoxu Huang
  • Qi Yuan
  • Ruijiang Hong
  • Limei Cha


CdS thin films were successfully fabricated on glass substrates in different pH solutions by chemical bath deposition (CBD). The influences of pH value on the thickness, growth process, structure as well as on the optical properties of CdS film were investigated. The as-deposited films exhibited pure cubic phase structure, indicating that the pH had no significant effect on the crystal structure of CdS film. The optical transmittance spectra demonstrated that the films deposited at 11.7 and 11.8 pH exhibited relatively high transmittance in the long wavelength. And the optical band gaps decreased from 2.42 to 2.31 eV with increasing pH values. Subsequently, the growth process of CdS films was studied by analyzing the morphologies and particles sizes at different growing stages of the deposition. It was found that the particle clusters produced by homogeneous reaction acted as nucleation sites during the deposition process, and CdS preferred to grow on their surface. As a result, the sizes of clusters expanded with deposition time until a continuous film was formed, and the duration to obtain a continuous film reduced with decreasing pH values. Hence, a growth mode of CdS film on the glass substrate was proposed, i.e. the film was formed by the connection of expanded particle clusters produced by homogeneous reaction.



This work was financially supported by Department of Education of Guangdong Province, China (Grant No. 2013CXZDA002), Guangdong Science and Technology Department, China (Grant No. 2014A010106009), National Natural Science Foundation of China (No. 51402103) and Hunan Natural Science Foundation of China (No. 2015JJ3040).


  1. 1.
    S.H. Mousavi, M.H. Jilavi, T.S. Müller, P.W. de Oliveira, J. Mater. Sci.: Mater. Electron. 25, 2786–2794 (2014)Google Scholar
  2. 2.
    S.R. Meher, D.K. Kaushik, A. Subrahmanyam, J. Mater. Sci.: Mater. Electron. 28, 6033–6046 (2017)Google Scholar
  3. 3.
    E. Yücel, S. Kahraman, Ceram. Int. 41, 4726–4734 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Jun-feng, F. Gan-hua, V. Krishnakumar, L. Cheng, W. Jaegermann, J. Mater. Sci.: Mater. Electron. 24, 2695–2700 (2013)Google Scholar
  5. 5.
    M. Esmaeili-Zare, M. Behpour, J. Mater. Sci.: Mater. Electron. 28, 10173–10183 (2017)Google Scholar
  6. 6.
    R.K. Choubey, D. Desai, S.N. Kale, S. Kumar, J. Mater. Sci.: Mater. Electron. 27, 7890–7898 (2016)Google Scholar
  7. 7.
    H. Lu, B. Liu, S. He, J. Liu, X. Liu, B. Li, J. Zhang, W. Li, L. Wu, W. Wang, L. Feng, J. Mater. Sci.: Mater. Electron. 28, 9828–9835 (2017)Google Scholar
  8. 8.
    H. Derin, K. Kantarlı, Surf. Interface Anal. 41, 61–68 (2009)CrossRefGoogle Scholar
  9. 9.
    E. Feldmeier, A. Fuchs, J. Schaffner, H.-J. Schimper, A. Klein, W. Jaegermann, Thin Solid Films 519, 7596–7599 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Slonopas, N. Alijabbari, C. Saltonstall, T. Globus, P. Norris, Electrochim. Acta 151, 140–149 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Lee, E.S. Lee, T.Y. Kim, J.S. Cho, Y.J. Eo, J.H. Yun, A. Cho, Sol. Energ. Mat. Sol. C 141, 299–308 (2015)CrossRefGoogle Scholar
  12. 12.
    P. O’Brien, J. McAleese, J. Mater. Chem. 8, 2309–2314 (1998)CrossRefGoogle Scholar
  13. 13.
    M. Cao, Y. Sun, J. Wu, X. Chen, N. Dai, J. Alloy. Compd. 508, 297–300 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Hariech, M. Aida, H. Moualkia, Mat. Sci. Semicond. Proc. 15, 181–186 (2012)CrossRefGoogle Scholar
  15. 15.
    T. Chu, S.S. Chu, N. Schultz, C. Wang, C. Wu, J. Electrochem. Soc. 139, 2443–2446 (1992)CrossRefGoogle Scholar
  16. 16.
    Y. Ohtake, T. Okamoto, A. Yamada, M. Konagai, K. Saito, Sol. Energy Mat. Sol. C 49, 269–275 (1997)CrossRefGoogle Scholar
  17. 17.
    M. Cao, L. Li, B.L. Zhang, J. Huang, K. Tang, H. Cao, Y. Sun, Y. Shen, J. Alloy. Compd. 530, 81–84 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Alhammadi, K. Moon, H. Park, W.K. Kim, Thin Solid Films 625, 56–61 (2017)CrossRefGoogle Scholar
  19. 19.
    E. Yücel, O. Şahin, Ceram. Int. 42, 6399–6407 (2016)CrossRefGoogle Scholar
  20. 20.
    F. Ballipinar, A.C. Rastogi, J. Appl. Phys. 121, 035302 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Moualkia, G. Rekhila, M. Izerrouken, A. Mahdjoub, M. Trari, Mat. Sci. Semicond. Proc. 21, 186–193 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.S. Lo, R.K. Choubey, W.C. Yu, W.T. Hsu, C.W. Lan, Thin Solid Films 520, 217–223 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Moualkia, S. Hariech, M.S. Aida, N. Attaf, E.L. Laifa, J. Phys. D 42, 135404 (2009)CrossRefGoogle Scholar
  24. 24.
    E. Yücel, N. Güler, Y. Yücel, J. Alloy. Compd. 589, 207–212 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Linquan Zhang
    • 1
  • Jinchun Jiang
    • 1
  • Wei Wang
    • 1
  • Xiaoxu Huang
    • 1
  • Qi Yuan
    • 2
  • Ruijiang Hong
    • 1
  • Limei Cha
    • 2
  1. 1.Guangdong Provincial Key Laboratory of Photovoltaic Technology, School of PhysicsSun Yat-sen UniversityGuangzhouChina
  2. 2.College of Material Science and EngineeringHunan UniversityChangshaChina

Personalised recommendations