Pressure influence on structural and optical behaviors of ZnTe thin films grown by PLD

  • F. J. Ochoa-Estrella
  • A. Vera-Marquina
  • I. Mejia
  • A. L. Leal-Cruz
  • M. Quevedo-López


In this work, ZnTe thin films were grown by pulsed laser deposition technique with the aim of study their structural and optical behaviors as function of deposition pressure and consider their potential application in optoelectronic devices. Hence, to obtain the stoichiometric ZnTe phase, the deposition temperature was considered as constant (286 °C) during growth process and deposition pressure was varied, as follow: 1, 20, 50, and 100 mTorr. After that, deposited films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and UV–Vis spectroscopy techniques. Characterization results reveals that deposited films correspond to stoichiometric, nanostructured, uniform and monophasic deposits of ZnTe with a strong preferential orientation in the (111) plane. It is noteworthy that thickness, grain size and crystal size of the films do not show a linear dependence on the range of deposition pressure. On the other hand, UV–Vis spectroscopy results indicate that band gap values of ZnTe films can be tuned in the range of 2.43–2.56 eV as function of deposition pressure. Lastly, it is consider that ZnTe thin films deposited at 20 mTorr present the best match between structural and optical characteristics for potential applications in development of optoelectronic devices.



The authors wish to thank the RD Research & Technology S.A. de C.V. enterprise for the financial assistance. The authors also wish to thank the constant support from the University of Texas at Dallas and the Department of Materials Sciences and Engineering.


  1. 1.
    K. Yoshino, A. Memon, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, Optical characterization of the ZnTe pure-green LED. Phys. Stat. Sol. (b) 229, 977–980 (2002)CrossRefGoogle Scholar
  2. 2.
    J. Li, T.R. Ohno, C.A. Wolden, The impact of different metallization layers on CdTe solar cells contacted with ZnTe:Cu buffer layers, Photovoltaic Specialists conference (PVSC) IEEE 43rd, pp. 1474–1479 (2016)Google Scholar
  3. 3.
    S.-W. Han, Local structural properties in the terahertz semiconductor Zn1-xCdxTe. Jpn. J. Appl. Phys. 42, 6303 (2003)CrossRefGoogle Scholar
  4. 4.
    J.H. Chang, J.S. Song, K. Godo, T. Yao, M.Y. Shen, T. Goto, ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices. Appl. Phys. Lett. 78, 566–568 (2001)CrossRefGoogle Scholar
  5. 5.
    T. Ishizaki, T. Ohtomo, A. Fuwa, Structural, optical and electrical properties of ZnTe thin films electrochemically deposited from a citric acid aqueous solution. J. Phys. D: Appl. Phys. 37, 255–260 (2004)CrossRefGoogle Scholar
  6. 6.
    K.S. Aqili, Z. Ali, A. Maqsood, Optical and structural properties of two-sourced evaporated ZnTe thin films. Appl. Surf. Sci. 167, 1–11 (2000)CrossRefGoogle Scholar
  7. 7.
    E. Przezdziecka, E. Dynowska, W. Paszkowicz, W. Dobrowolski, H. Kepa, C.F. Majkrzak, T.M. Giebultowicz, E. Janik, J. Kossut, MnTe and ZnTe grown on sapphire by molecular beam epitaxy. Thin Solid Films. 516, 4813–4818 (2008)CrossRefGoogle Scholar
  8. 8.
    B. Kotlyarchuk, V. Savchuk, Investigation of ZnTe thin films grown by pulsed laser deposition method. Phys. Stat. Sol. (b) 244, 1714–1719 (2007)CrossRefGoogle Scholar
  9. 9.
    T. Mahalingam, V.S. John, G. Ravi, P.J. Sebastian, Microstrucutural characterization of electrosynthesized ZnTe thin films. Cryst. Res. Technol. 37, 329–339 (2002)CrossRefGoogle Scholar
  10. 10.
    G.I. Rusu, P. Prepelita, R.S. Rusu, N. Apetroaie, G. Oniciuc, A. Amariei, On the structural and optical characteristics of zinc telluride thin films. J. Optoelectron. Adv. Mater. 8, 922–926 (2006)Google Scholar
  11. 11.
    A. Mondal, S. Chaudhuri, A.K. Pal, Optical properties of ZnTe films. Appl. Phys. A 43, 81–84 (1987)CrossRefGoogle Scholar
  12. 12.
    C.M. Rouleau, D.H. Lowndes, M.A. Staruss, S. Cao, A.J. Pedraza, D.B. Geohegan, A.A. Puretzky, L.F. Allard, Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth. Mat. Res. Soc. Symp. Proc. 397, 119–124 (1996)CrossRefGoogle Scholar
  13. 13.
    K.S. Lee, G. Oh, E.K. Lim, Growth of p-type ZnTe thin films by using nitrogen doping during pulse laser deposition. J. Korean Phys. Soc. 67, 672–675 (2015)CrossRefGoogle Scholar
  14. 14.
    G.K. Rao, K.V. Bangera, G.K. Shivakumar, The effect of substrate temperature on the structural, optical and electrical properties of vacuum deposited ZnTe thin films. Vacuum 83, 1485–1488 (2009)CrossRefGoogle Scholar
  15. 15.
    N.W. Park, W.Y. Lee, J.E. Hong, T.H. Park, S.G. Yoon, H. Im, H.S. Kim, S.K. Lee, Effect of grain size on thermal transport in post-annealed antimony telluride thin films. Nanoscale Res. Lett. 10, 1–9 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, S. Noda, Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures. IEEE Photonics J. 6, 4700110–4700110 (2014)CrossRefGoogle Scholar
  17. 17.
    T.M. Razykov, S.Z. Karazhanov, A.Y. Leiderman, N.F. Khusainova, K. Kouchkarov, Effect of the grain boundaries on the conductivity and current transport in II–VI films. Solar Energy Mater. Solar Cells 90, 2255–2262 (2006)CrossRefGoogle Scholar
  18. 18.
    B. Ghosh, D. Ghosh, S. Hussain, R. Bhar, A.K. Pal, Growth of ZnTe films by pulsed laser deposition technique. J. Alloys Compd. 541, 104–110 (2012)CrossRefGoogle Scholar
  19. 19.
    E. Bacaksiz, S. Aksu, N. Ozer, M. Tomakin, A. Ozcelik, The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnTe thin films. Appl. Surf. Sci. 256, 1566–1572 (2009)CrossRefGoogle Scholar
  20. 20.
    W. Promnopas, T. Thongtem, S. Thongtem, ZnTe semiconductor-polymer gel composited electrolyte for conversion of solar energy. J. Nanomater. 2014, 1–6 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Chander, M.S. Dhaka, Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications. Phys. E 80, 62–68 (2016)CrossRefGoogle Scholar
  22. 22.
    L.I. Maissel, P.M. Schaible, Thin films deposited by bias sputtering. J. Appl. Phys. 36, 237–342 (1965)CrossRefGoogle Scholar
  23. 23.
    S.K. Hau, K.H. Wong, P.W. Chan, C.L. Choy, Intrinsic resputtering in pulsed-laser deposition of lead-zirconate-titanate thin films. Appl. Phys. Lett. 66 245–247 (1995)CrossRefGoogle Scholar
  24. 24.
    S. Fahler. K. Sturm, H.-U. Krebs, Resputtering during the growth of pulsed-laser-deposited metallic films in vacuum and in an ambient gas. Appl. Phys. Lett. 75, 3766–3768 (1999)CrossRefGoogle Scholar
  25. 25.
    F.A. Akgul, G. Akgul, H.H. Gullu, H.E. Unalan, R. Turan, Improved diode properties in zinc telluride thin film-silicon nanowire hetrojunctions. Philos. Mag. 95, 1–20 (2015)CrossRefGoogle Scholar
  26. 26.
    Q. Zhang, J. Zhang, M.I.B. Utama, B. Peng, M. de la Mata, J. Arbiol, Q. Xiong, Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Phys. Rev. B 85, 085418 (2012)CrossRefGoogle Scholar
  27. 27.
    V. Wiedemeier, G. Berth, A. Zrenner, E.M. Larramendi, U. Woggon, K. Lischka, D. Schikora, In situ characterization of ZnTe epilayer irradiation via time-resolved and power-density-dependent Raman spectroscopy. Semicond. Sci. Technol. 26, 105023 (2011)CrossRefGoogle Scholar
  28. 28.
    F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and electronic structure of copper oxide thin films. Mater. Chem. Phys. 147, 987–995 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Tauc, Amorphous and Liquid Semiconductor (Plenum Press, New York, 1976)Google Scholar
  30. 30.
    I. Jacques, Pankove, Optical Processes in Semiconductors (Dover publications, Inc., Minelo, 1971)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico
  2. 2.División de Ingeniería ElectrónicaInstituto Tecnológico Superior de CajemeCiudad ObregónMexico
  3. 3.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations