Impact of C5+ ion beam on Dy activated Sr2B5O9Cl TL phosphor

  • Abha H. Oza
  • Vibha Chopra
  • N. S. Dhoble
  • S. J. Dhoble


Sr2B5O9Cl: Dy phosphor was synthesized by modified solid state diffusion method and the impact of C5+ ion-beam on its TL behavior was studied in detail. Phosphor was annealed at 1000 °C for obtaining single phase host. XRD technique was used to confirm the formation of the material and was matched with JCPDS-27-08835. The synthesized phosphor was characterized for photoluminescent spectra. Characteristic emission at 484 nm (4F9/26H15/2) and 575 nm (4F9/26H13/2) confirms the presence of Dy3+ ions in the Sr2B5O9Cl host matrix. Further TL properties of the synthesized material were studied for fluence range 1.5 × 1011–30 × 1011 ion/cm2 (i.e. 40.14–802.9 kGy dose) of C5+ ion-beam (75 MeV) and were found to show the non linear behavior between a dose range 40.14–802.9 kGy. TL glow curve for Sr2B5O9Cl:Dy irradiated with C5+ ion-beam (75 MeV) was compared with that of γ-ray irradiated phosphor. TRIM/SRIM calculations were performed to correlate the changes in TL properties of Sr2B5O9Cl:Dy phosphor.



We are grateful to Scientist, Mr. D. Sen of IUAC, New Delhi for valuable discussions. One of the authors (VC) is grateful to the Director, Inter University Accelerator Center (IUAC), New Delhi, for providing necessary facilities to carry out this work under research project (sanctioned beam line Project (BTR-I) Ref No. IUAC/XIII.3A/).


  1. 1.
    T. Rivera, Appl. Radiat. Isot. 71, 30 (2012)CrossRefGoogle Scholar
  2. 2.
    S.W.S. McKeever, Radiat. Meas. 46, 1336 (2011)CrossRefGoogle Scholar
  3. 3.
    P. Seth, S. Rajput, S.M.D. Rao, S. Aggarwal, Radiat. Meas. 84, 9 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Bahl, S.P. Lochab, P. Kumar, Radiat. Phys. Chem. 119, 136 (2016)CrossRefGoogle Scholar
  5. 5.
    W. Barth, L. Dahl, J. Glatz, P. Forck, J. Klabunde, Proceedings of the Particle Accelerator Conference, Chicago, 3281, (2001)Google Scholar
  6. 6.
    W. Barth, L. Dahl, J. Glatz, L. Groening, S. Richter, S. Yaramishev, Proceedings DIPAC, 161 (2003)Google Scholar
  7. 7.
    U. Amaldi, G. Kraft, Rep. Prog. Phys. 68, 1861 (2005)CrossRefGoogle Scholar
  8. 8.
    B.P. Kore, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, RSC Adv. 4, 49979 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Bahl, S.P. Lochab, P. Kumar, Int. J. Phys. Math. Sci. 3, 5 (2016)Google Scholar
  10. 10.
    N. Salah, J. Phys. D: App. Phys. 41, 155302 (2008)CrossRefGoogle Scholar
  11. 11.
    B.P. Kore, N.S. Dhoble, R.M. Kadam, S.P. Lochab, S.J. Dhoble, Mater.Chem. Phys. 161, 96 (2015)CrossRefGoogle Scholar
  12. 12.
    V.P. Dostenko, I.V. Berezovskaya, N.P. Efryushina, A.S. Voloshinovskii, P. Dorenbos, C.W.E. Van Eijk, J. Lumin. 93, 137 (2011)Google Scholar
  13. 13.
    J. Zheng, C. Guo, D. Ding, Z. Ren, J. Bai, Curr. Appl. Phys. 12, 643 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Nande, S. Raut, Int. J. Res. Eng. Sci. Technol. 3, EE 56 (2017)Google Scholar
  15. 15.
    Y. C.Lin, M. Karlsson, M. Bettinelli, Top. Curr. Chem. 374, 21 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Santiago, A. Lavat, E. Caselli, M. Lester, L.J. Perisinotti, A.K. de Figuereido, F. Spano, F. Ortega, Phys. Stat. Sol. A 167, 233 (1998)CrossRefGoogle Scholar
  17. 17.
    S.J. Dhoble, S.V. Moharil, Nucl. Instrum. Method. Phy. Res. B 160, 274 (2000)CrossRefGoogle Scholar
  18. 18.
    A.H. Oza, N.S. Dhoble, K. Park, S.J. Dhoble, Lumin.: J. Bio. Chem. Lumin. 30, 768 (2015)CrossRefGoogle Scholar
  19. 19.
    A.H. Oza, N.S. Dhoble, S.J. Dhoble, Nucl. Inst. Methods Phys. Res. B 344, 96 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Furreta, Handbook of Thermoluminescence (World Scientific Publishing Co. Pvt. Ltd., Singapore, 2003)CrossRefGoogle Scholar
  21. 21.
    D. Kanjilal, S. Chopra, M.M. Narayanan, I.S. Iyer, J.J.R. vandana, S.K. Datta, Nucl. Instrum. Methods Phy. Res. A 328, 97 (1993)CrossRefGoogle Scholar
  22. 22.
    C. Fouassier, A. Levasseur, P. Hagenmuller, J. Solid State Chem. 3, 206 (1971)CrossRefGoogle Scholar
  23. 23.
    G.H. Dieke, H.M. Crosswhite, H. Crosswhite, Spectra and Energy Levels of Rare-Earth Ions in Crystals. (Wiley, New York, 1968)Google Scholar
  24. 24.
    M. Batentschuka, A. Winnacker, K. Schwartz, C. Trautmann, J. Lumin. 125, 40 (2007)CrossRefGoogle Scholar
  25. 25.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids. (Pergamon, Oxford, 1985)Google Scholar
  26. 26.
    O.P. Geis, M. Kramer, G. Kraft, Nucl. Instrum. Methods Phys. Res. B 142, 592 (1998)CrossRefGoogle Scholar
  27. 27.
    Y.S. Horowitz, D. Satinger, L. Oster, N. Issa, M.E. Brandan, O. Avila, M. Rodriguez-Villafuert, I. Gamboa-deBuen, A.E. Buenfil, C. Ruiz-Trejo, Radiat. Meas. 33, 459 (2001)CrossRefGoogle Scholar
  28. 28.
    Y.S. Horowitz, O. Avila, M. Rodriguez-Villafuerte, Nucl. Instrum. Methods Phys. Res. B. 184, 85 (2001)CrossRefGoogle Scholar
  29. 29.
    I.C. Munoz, E. Cruz-Zaragoza, A. Favalli, C. Furetta, Appl. Radiat. Isot. 70, 893 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Puchalska, P. Bilski, P. Olko, Rad. Meas. 42, 601 (2007)CrossRefGoogle Scholar
  31. 31.
    N. Salah, Radiat. Phys. Chem. 80, 1 (2011)CrossRefGoogle Scholar
  32. 32.
    C. Furetta, C.H. Kuo, P.S. Weng, Nucl. Instrum. Methods Phys. Res. A 423, 183 (1999)CrossRefGoogle Scholar
  33. 33.
    G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, J. Phys. D Appl. Phys. 31, 2636 (1998)CrossRefGoogle Scholar
  34. 34.
    S.W.S. McKeever, Thermoluminescence of Solids, (Q5 University Press, Cambridge, 1985)CrossRefGoogle Scholar
  35. 35.
    R. Chen, J. Appl. Phys. 40, 570 (1969)CrossRefGoogle Scholar
  36. 36.
    C. Furetta, G. Kitis, P.S. Weng, T.C. Chu, Nucl. Instrum. Methods Phys. Res. A 420, 441 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsRTM Nagpur UniversityNagpurIndia
  2. 2.P.G. Department of Physics & ElectronicsDAV CollegeAmritsarIndia
  3. 3.Department of ChemistrySevadal Mahila MahavidyalayaNagpurIndia

Personalised recommendations