Skip to main content
Log in

Preparation of Cu2ZnSnS4 thin films with high carrier concentration and high carrier mobility by optimized annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Cu2ZnSnS4 (CZTS) thin film with both high carrier concentration of 3.10 × 1020 cm−3 and high mobility of 19.8 cm2/V/s was prepared with optimization of heat treatment technique. In this work, different heat treatment techniques have been applied for the as-deposited CZTS by electrodeposition method. The as-deposited CZTS thin films have suitable Cu-poor and Zn-rich chemical composition, determining the high carrier concentration. The grain boundaries were designed for enhancement of carrier mobility of the CZTS thin films. Multi-step annealing refined the grains and increased the area of the grain boundaries in the films, resulting in the slight decrease of carrier mobility. Based on multi-step annealing, long and narrow particles and the preferential orientation of the grain boundaries formed by the decrease of Ar flow rate in 550 °C annealing. With such structure, the direct transportation of the holes along the vicinity of the grain boundaries increased carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Zhou, W.-C. Hsu, H.-S. Duan, B. Bob, W. Yang, T.-B. Song, C.-J. Hsu, Y. Yang, CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ. Sci. 6, 2822 (2013)

    Article  CAS  Google Scholar 

  2. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134–3159 (2015)

    Article  CAS  Google Scholar 

  3. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 49). Prog. Photovolt. 25, 3–13 (2017)

    Article  Google Scholar 

  4. A.D. Collord, H.W. Hillhouse, Composition control and formation pathway of CZTS and CZTGS nanocrystal inks for kesterite solar cells. Chem. Mater. 27, 1855–1862 (2015)

    Article  CAS  Google Scholar 

  5. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013)

    Article  Google Scholar 

  6. Z. Li, Materials Physics (Chemical Industry Press, Beijing, 2015)

    Google Scholar 

  7. K. Ito, Copper Zinc Tin Sulfide Based Thin Film Solar Cell (Wiley, Chichester, 2015)

    Google Scholar 

  8. A. Singh, S. Singh, S. Levcenko, T. Unold, F. Laffir, K.M. Ryan, Compositionally tunable photoluminescence emission in Cu2ZnSn(S1–xSex)4 nanocrystals. Angew. Chem. 52, 9120–9124 (2013)

    Article  CAS  Google Scholar 

  9. C. Malerba, F. Biccari, C.L. Azanza Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, CZTS stoichiometry effects on the band gap energy. J. Alloys Compd. 582, 528–534 (2014)

    Article  CAS  Google Scholar 

  10. S. Chen, L.-W. Wang, A. Walsh, X.G. Gong, S.-H. Wei, Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 101, 223901 (2012)

    Article  Google Scholar 

  11. A. Tang, J. Liu, J. Ji, M. Dou, Z. Li, F. Wang, One-step electrodeposition for targeted off-stoichiometry Cu2ZnSnS4 thin films. Appl. Surf. Sci. 383, 253–260 (2016)

    Article  CAS  Google Scholar 

  12. S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.-H. Moon, J.H. Kim, J.Y. Lee, Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Sol. Energy Mater. Sol. Cells 95, 3202–3206 (2011)

    Article  CAS  Google Scholar 

  13. J. Ge, J. Jiang, P. Yang, C. Peng, Z. Huang, S. Zuo, L. Yang, J. Chu, A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/Mo thin film solar cell. Sol. Energy Mater. Sol. Cells 125, 20–26 (2014)

    Article  CAS  Google Scholar 

  14. W.-C. Hsu, H. Zhou, S. Luo, T.-B. Song, Y.-T. Hsieh, H.-S. Duan, S. Ye, W. Yang, C. Jiang, B. Bob, Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn(S,Se)4 device. ACS Nano 8, 9164–9172 (2014)

    Article  CAS  Google Scholar 

  15. M.G. Sousa, A.F. da Cunha, P.A. Fernandes, J.P. Teixeira, R.A. Sousa, J.P. Leitão, Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance. Sol. Energy Mater. Sol. Cells 126, 101–106 (2014)

    Article  CAS  Google Scholar 

  16. J.J. Scragg, P.J. Dale, L.M. Peter, Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films 517, 2481–2484 (2009)

    Article  CAS  Google Scholar 

  17. S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, S.S. Kolekar, J.H. Kim, Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochim. Acta 55, 4057–4061 (2010)

    Article  CAS  Google Scholar 

  18. J. Tao, J. Liu, L. Chen, H. Cao, X. Meng, Y. Zhang, C. Zhang, L. Sun, P. Yang, J. Chu, 7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chem. 18, 550–557 (2016)

    Article  CAS  Google Scholar 

  19. A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, J. Guan, One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing. Appl. Surf. Sci. 402, 70–77 (2017)

    Article  CAS  Google Scholar 

  20. J.B. Li, V. Chawla, B.M. Clemens, Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 24, 720–723 (2012)

    Article  CAS  Google Scholar 

  21. X. Xu, F. Wang, Z. Li, J. Liu, J. Ji, J. Chen, Effect of sulfosalicylic acid (C7H6O6S) on the electrodeposition of pure ZnS nanocrystal thin films from acidic solutions. Electrochim. Acta 87, 511–517 (2013)

    Article  CAS  Google Scholar 

  22. W. Liu, B. Guo, C. Mak, A. Li, X. Wu, F. Zhang, Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films 535, 39–43 (2013)

    Article  CAS  Google Scholar 

  23. A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, H. Miyake, Preparation of Cu2ZnSnS4 single crystals from Sn solutions. J. Cryst. Growth 341, 38–41 (2012)

    Article  CAS  Google Scholar 

  24. A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, K. Kakimoto, H. Miyake, Growth and characterization of Cu2ZnSnS4single crystals. Phys. Status Solidi (a) 210, 1328–1331 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work obtained the financial support from National Natural Science Foundation of China (Grant No. 51472020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhilin Li or Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, A., Li, Z., Wang, F. et al. Preparation of Cu2ZnSnS4 thin films with high carrier concentration and high carrier mobility by optimized annealing. J Mater Sci: Mater Electron 29, 7613–7620 (2018). https://doi.org/10.1007/s10854-018-8753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8753-5

Navigation