Skip to main content

Advertisement

Log in

Electrical and optical properties of pure and zirconium added dysprosium titanates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles of Dy2Ti2O7 and Dy2Ti1.5Zr0.5O7 (abbreviated as DTO and DTZO, respectively) have been prepared through an auto-igniting combustion technique. The structure of the system is analyzed by powder X-ray diffraction and vibrational spectroscopic tools. The samples are crystallized with cubic pyrochlore structure with the space group \(Fd\bar {3}m\). The particle size obtained from XRD and TEM analysis shows that the samples are nanocrystalline. The Fourier-transform infrared and Raman spectra of the samples are investigated in detail. The ultraviolet–visible absorption spectra of the samples are also recorded and their optical bandgap energy values are calculated. The photoluminescence spectra of the samples are recorded and the transitions causing emissions are identified. The surface morphology of the sintered pellets were studied by scanning electron microscopy which indicates minimum porosity, and the elemental composition was confirmed by energy-dispersive spectrometry. Impedance spectroscopic studies of the samples are carried out at different temperatures. The conductivity of the samples increased with temperature, and the highest conductivity of 1.93 × 10−1 S/m at 850 °C is obtained for DTO. The materials are suitable candidates for optoelectronic applications and the fabrication of electrolytes in solid oxide fuel cells at moderate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Suryanarayana, JOM 54, 24 (2002)

    Article  CAS  Google Scholar 

  2. Z. Zang, X. Tang, J. Alloy. Compd. 619, 98 (2015)

    Article  CAS  Google Scholar 

  3. Z. Zang, M. Wen, W. Chen, Y. Zeng, Z. Zu, X. Zeng, X. Tang, Mater. Des. 84, 418 (2015)

    Article  CAS  Google Scholar 

  4. L. Zhang, H. Zhong, W. Zhang, L. Lu, X. Yang, X. Wang, J. Alloy. Compd. 463, 466 (2008)

    Article  CAS  Google Scholar 

  5. M.A. Subramanian, G. Aravamudan, G.V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983)

    Article  CAS  Google Scholar 

  6. W.E. Klee, G. Weitz, J. Inorg. Nucl. Chem. 31, 2367 (1969)

    Article  CAS  Google Scholar 

  7. K.V.G. Kutty, C.K. Mathews, T.N. Rao, U.V. Varadaraju, Solid State Ionics 80, 99 (1995)

    Article  Google Scholar 

  8. N. Zhang, H. Wang, Y.D. Li, Q.J. Li, S.G. Huang, Y. Yu, J. Zheng, C. Cheng, C.C. Wang, J. Alloy. Compd. 683, 387 (2016)

    Article  CAS  Google Scholar 

  9. J. Kang, Z. Fang, X. Chen, W. Liu, F. Guo, S. Wu, Y. Zhang, J. Chen, J. Alloy. Compd. 599, 170 (2014)

    Article  CAS  Google Scholar 

  10. K.J. Moreno, M.A. Guevara-Liceaga, A.F. Fuentes, J. García-Barriocanal, C. León, J. Santamaría, J. Solid State Chem. 179, 928 (2006)

    Article  CAS  Google Scholar 

  11. L.P. Lyashenko, D.A. Belov, L.G. Shcherbakova, Inorg. Mater. 44, 1349 (2008)

    Article  CAS  Google Scholar 

  12. A.K. Tyagi, S.V. Chavan, R.D. Purohit, Indian J. Pure Appl. Phys. 44, 113 (2006)

    CAS  Google Scholar 

  13. A.K. Tyagi, R.D. Purohit, IANCAS Bull. 6, 120 (2007)

    Google Scholar 

  14. M. Glerup, O.F. Nielsen, F.W. Poulsen, J. Solid State Chem. 160, 25 (2001)

    Article  CAS  Google Scholar 

  15. M. Ma̧czka, J. Hanuza, K. Hermanowicz, A.F. Fuentes, K. Matsuhira, Z. Hiroi, J. Raman Spectrosc. 39, 537 (2008)

    Article  Google Scholar 

  16. S. Saha, S. Prusty, S. Singh, R. Suryanarayanan, A. Revcolevschi, A.K. Sood, J. Raman Spectrosc. 43, 549 (2012)

    Article  CAS  Google Scholar 

  17. A. Garbout, I.B. Taazayet-Belgacem, M. Férid, J. Alloy. Compd. 573, 43 (2013)

    Article  CAS  Google Scholar 

  18. S. Kumar, H.C. Gupta, Vib. Spectrosc. 62, 180 (2012)

    Article  CAS  Google Scholar 

  19. S. Saha, S. Singh, B. Dkhil, S. Dhar, R. Suryanarayanan, G. Dhalenne, A. Revcolevschi, A.K. Sood, Phys. Rev. B 78, 1 (2008)

    Google Scholar 

  20. A.F. Fuentes, K. Boulahya, M. MacZka, J. Hanuza, U. Amador, Solid State Sci. 7, 343 (2005)

    Article  CAS  Google Scholar 

  21. V.A.M. Brabers, Phys. Status Solidi 33, 563 (1969)

    Article  CAS  Google Scholar 

  22. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, J. Appl. Phys. 75, 2042 (1994)

    Article  CAS  Google Scholar 

  23. S. Solomon, A. George, J.K. Thomas, A. John, J. Electron. Mater. 44, 28 (2015)

    Article  CAS  Google Scholar 

  24. B. Vijaya Kumar, R. Velchuri, V. Rama Devi, B. Sreedhar, G. Prasad, D. Jaya Prakash, M. Kanagaraj, S. Arumugam, M. Vithal, J. Solid State Chem. 184, 264 (2011)

    Article  Google Scholar 

  25. R. Payling, P. Larkins, Optical Emission Lines of Elements, 1st edn. (New York, Wiley, 2000)

    Google Scholar 

  26. L.K. Joseph, K.R. Dayas, S. Damodar, B. Krishnan, K. Krishnankutty, V.P.N. Nampoori, P. Radhakrishnan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 1281 (2008)

    Article  Google Scholar 

  27. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005), p. 595

    Book  Google Scholar 

  28. A. George, J.K. Thomas, A. John, S. Solomon, Solid State Ionics 278, 245 (2015)

    Article  CAS  Google Scholar 

  29. K. Sambasiva Rao, D. Madhava Prasad, P. Murali Krishna, B. Tilak, K.C. Varadarajulu, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 133, 141 (2006)

    Article  Google Scholar 

  30. P.R. Das, J. Mod. Phys. 3, 870 (2012)

    Article  Google Scholar 

  31. D.B. Dhwajam, M.B. Suresh, U.S. Hareesh, J.K. Thomas, S. Solomon, A. John, J. Mater. Sci. Mater. Electron. 23, 653 (2012)

    Article  CAS  Google Scholar 

  32. F. John, J.K. Thomas, J. Jacob, S. Solomon, J. Electron. Mater. 24, (2017)

  33. X.L. Xia, J.H. Ouyang, Z.G. Liu, J. Am. Ceram. Soc. 93, 1074 (2010)

    Article  CAS  Google Scholar 

  34. S. Ramesh, K.C.J. Raju, Int. J. Hydrogen Energy 37, 10311 (2012)

    Article  CAS  Google Scholar 

  35. B.P. Das, P.K. Mahapatra, R.N.P. Chaudhary, Indian J. Eng. Mater. Sci. 15, 152 (2008)

    CAS  Google Scholar 

  36. J.Ross Macdonald, Solid State Ionics 13, 147 (1984)

    Article  CAS  Google Scholar 

  37. M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D. Appl. Phys. 43, 1 (2010)

    Article  Google Scholar 

  38. N.J. Tharayil, S. Sagar, R. Raveendran, A.V. Vaidyan, Phys. B Condens. Matter 399, 1 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Solomon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandeep, K., Thomas, J.K. & Solomon, S. Electrical and optical properties of pure and zirconium added dysprosium titanates. J Mater Sci: Mater Electron 29, 7600–7612 (2018). https://doi.org/10.1007/s10854-018-8752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8752-6

Navigation