Advertisement

Electrical and optical properties of pure and zirconium added dysprosium titanates

  • K. Sandeep
  • Jijimon K. Thomas
  • Sam Solomon
Article
  • 51 Downloads

Abstract

Nanoparticles of Dy2Ti2O7 and Dy2Ti1.5Zr0.5O7 (abbreviated as DTO and DTZO, respectively) have been prepared through an auto-igniting combustion technique. The structure of the system is analyzed by powder X-ray diffraction and vibrational spectroscopic tools. The samples are crystallized with cubic pyrochlore structure with the space group \(Fd\bar {3}m\). The particle size obtained from XRD and TEM analysis shows that the samples are nanocrystalline. The Fourier-transform infrared and Raman spectra of the samples are investigated in detail. The ultraviolet–visible absorption spectra of the samples are also recorded and their optical bandgap energy values are calculated. The photoluminescence spectra of the samples are recorded and the transitions causing emissions are identified. The surface morphology of the sintered pellets were studied by scanning electron microscopy which indicates minimum porosity, and the elemental composition was confirmed by energy-dispersive spectrometry. Impedance spectroscopic studies of the samples are carried out at different temperatures. The conductivity of the samples increased with temperature, and the highest conductivity of 1.93 × 10−1 S/m at 850 °C is obtained for DTO. The materials are suitable candidates for optoelectronic applications and the fabrication of electrolytes in solid oxide fuel cells at moderate temperatures.

Notes

Acknowledgements

The authors acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala for financial assistance.

References

  1. 1.
    C. Suryanarayana, JOM 54, 24 (2002)CrossRefGoogle Scholar
  2. 2.
    Z. Zang, X. Tang, J. Alloy. Compd. 619, 98 (2015)CrossRefGoogle Scholar
  3. 3.
    Z. Zang, M. Wen, W. Chen, Y. Zeng, Z. Zu, X. Zeng, X. Tang, Mater. Des. 84, 418 (2015)CrossRefGoogle Scholar
  4. 4.
    L. Zhang, H. Zhong, W. Zhang, L. Lu, X. Yang, X. Wang, J. Alloy. Compd. 463, 466 (2008)CrossRefGoogle Scholar
  5. 5.
    M.A. Subramanian, G. Aravamudan, G.V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983)CrossRefGoogle Scholar
  6. 6.
    W.E. Klee, G. Weitz, J. Inorg. Nucl. Chem. 31, 2367 (1969)CrossRefGoogle Scholar
  7. 7.
    K.V.G. Kutty, C.K. Mathews, T.N. Rao, U.V. Varadaraju, Solid State Ionics 80, 99 (1995)CrossRefGoogle Scholar
  8. 8.
    N. Zhang, H. Wang, Y.D. Li, Q.J. Li, S.G. Huang, Y. Yu, J. Zheng, C. Cheng, C.C. Wang, J. Alloy. Compd. 683, 387 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Kang, Z. Fang, X. Chen, W. Liu, F. Guo, S. Wu, Y. Zhang, J. Chen, J. Alloy. Compd. 599, 170 (2014)CrossRefGoogle Scholar
  10. 10.
    K.J. Moreno, M.A. Guevara-Liceaga, A.F. Fuentes, J. García-Barriocanal, C. León, J. Santamaría, J. Solid State Chem. 179, 928 (2006)CrossRefGoogle Scholar
  11. 11.
    L.P. Lyashenko, D.A. Belov, L.G. Shcherbakova, Inorg. Mater. 44, 1349 (2008)CrossRefGoogle Scholar
  12. 12.
    A.K. Tyagi, S.V. Chavan, R.D. Purohit, Indian J. Pure Appl. Phys. 44, 113 (2006)Google Scholar
  13. 13.
    A.K. Tyagi, R.D. Purohit, IANCAS Bull. 6, 120 (2007)Google Scholar
  14. 14.
    M. Glerup, O.F. Nielsen, F.W. Poulsen, J. Solid State Chem. 160, 25 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Ma̧czka, J. Hanuza, K. Hermanowicz, A.F. Fuentes, K. Matsuhira, Z. Hiroi, J. Raman Spectrosc. 39, 537 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Saha, S. Prusty, S. Singh, R. Suryanarayanan, A. Revcolevschi, A.K. Sood, J. Raman Spectrosc. 43, 549 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Garbout, I.B. Taazayet-Belgacem, M. Férid, J. Alloy. Compd. 573, 43 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Kumar, H.C. Gupta, Vib. Spectrosc. 62, 180 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Saha, S. Singh, B. Dkhil, S. Dhar, R. Suryanarayanan, G. Dhalenne, A. Revcolevschi, A.K. Sood, Phys. Rev. B 78, 1 (2008)Google Scholar
  20. 20.
    A.F. Fuentes, K. Boulahya, M. MacZka, J. Hanuza, U. Amador, Solid State Sci. 7, 343 (2005)CrossRefGoogle Scholar
  21. 21.
    V.A.M. Brabers, Phys. Status Solidi 33, 563 (1969)CrossRefGoogle Scholar
  22. 22.
    H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, J. Appl. Phys. 75, 2042 (1994)CrossRefGoogle Scholar
  23. 23.
    S. Solomon, A. George, J.K. Thomas, A. John, J. Electron. Mater. 44, 28 (2015)CrossRefGoogle Scholar
  24. 24.
    B. Vijaya Kumar, R. Velchuri, V. Rama Devi, B. Sreedhar, G. Prasad, D. Jaya Prakash, M. Kanagaraj, S. Arumugam, M. Vithal, J. Solid State Chem. 184, 264 (2011)CrossRefGoogle Scholar
  25. 25.
    R. Payling, P. Larkins, Optical Emission Lines of Elements, 1st edn. (New York, Wiley, 2000)Google Scholar
  26. 26.
    L.K. Joseph, K.R. Dayas, S. Damodar, B. Krishnan, K. Krishnankutty, V.P.N. Nampoori, P. Radhakrishnan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 1281 (2008)CrossRefGoogle Scholar
  27. 27.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005), p. 595CrossRefGoogle Scholar
  28. 28.
    A. George, J.K. Thomas, A. John, S. Solomon, Solid State Ionics 278, 245 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Sambasiva Rao, D. Madhava Prasad, P. Murali Krishna, B. Tilak, K.C. Varadarajulu, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 133, 141 (2006)CrossRefGoogle Scholar
  30. 30.
    P.R. Das, J. Mod. Phys. 3, 870 (2012)CrossRefGoogle Scholar
  31. 31.
    D.B. Dhwajam, M.B. Suresh, U.S. Hareesh, J.K. Thomas, S. Solomon, A. John, J. Mater. Sci. Mater. Electron. 23, 653 (2012)CrossRefGoogle Scholar
  32. 32.
    F. John, J.K. Thomas, J. Jacob, S. Solomon, J. Electron. Mater. 24, (2017)Google Scholar
  33. 33.
    X.L. Xia, J.H. Ouyang, Z.G. Liu, J. Am. Ceram. Soc. 93, 1074 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Ramesh, K.C.J. Raju, Int. J. Hydrogen Energy 37, 10311 (2012)CrossRefGoogle Scholar
  35. 35.
    B.P. Das, P.K. Mahapatra, R.N.P. Chaudhary, Indian J. Eng. Mater. Sci. 15, 152 (2008)Google Scholar
  36. 36.
    J.Ross Macdonald, Solid State Ionics 13, 147 (1984)CrossRefGoogle Scholar
  37. 37.
    M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D. Appl. Phys. 43, 1 (2010)CrossRefGoogle Scholar
  38. 38.
    N.J. Tharayil, S. Sagar, R. Raveendran, A.V. Vaidyan, Phys. B Condens. Matter 399, 1 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMar Ivanios CollegeThiruvananthapuramIndia

Personalised recommendations