Advertisement

Fabrication and electro-optical properties of CuAl0.8O2/Zn0.95Al0.05O heterojunction films

  • Hua Wang
  • Jiwen Xu
  • Ling Yang
Article
  • 39 Downloads

Abstract

CuAl0.8O2/Zn0.95Al0.05O heterojunction films were fabricated on quartz glass substrates. CuAl0.8O2 films were synthesised by the sol–gel method, and Zn0.95Al0.05O films were deposited onto a CuAl0.8O2-coated substrate through spray pyrolysis technique. The electro-optical properties of the CuAl0.8O2/Zn0.95Al0.05O heterojunction films were then investigated. The Zn0.95Al0.05O films deposited onto the CuAl0.8O2-coated substrate exhibited better crystallisation and larger grain size than those deposited onto quartz glass, and CuAl0.8O2 was not decomposed into other phases during the synthesis of Zn0.95Al0.05O films. The CuAl0.8O2/Zn0.95Al0.05O heterojunction films demonstrated rectifying IV characteristics. Two optical transitions were observed in the CuAl0.8O2 films with optical gaps of 2.78 and 3.36 eV. Meanwhile, the average transmittance of the CuAl0.8O2/Zn0.95Al0.05O heterostructure films with a total thickness of 400 nm was over 75% in the 500–800 nm wavelength range. The CuAl0.8O2/Zn0.95Al0.05O heterostructure films achieved good electro-optical properties when the thickness ratio of the CuAlO2 and Zn0.95Al0.05O films was in the range of 1:5–3:3 with a total thickness of 600 nm.

Notes

Acknowledgements

This work was supported by Innovation Project of Guangxi Graduate Education, China (Grant No. 20101059 50809M37).

References

  1. 1.
    G. Thomas, Nature 389, 907 (1997)CrossRefGoogle Scholar
  2. 2.
    K. Tonooka, H. Bando, Y. Aiura, Thin Solid Films 445, 327 (2003)CrossRefGoogle Scholar
  3. 3.
    B. Ling, X.W. Sun, J.L. Zhao, S.T. Tan, Z.L. Dong, Y. Yang, H.Y. Yu, K.C. Qi, Physica E 41, 635 (2009)CrossRefGoogle Scholar
  4. 4.
    J.A. Spies, R. Schafer, J.F. Wager, P. Hersh, H.A.S. Platt, D.A. Keszler, G. Schneider, R. Kykyneshi, J. Tate, X. Liu, A.D. Compaan, W.N. Schafarman, Sol Energy Mater. Sol. Cells 93, 1296 (2009)CrossRefGoogle Scholar
  5. 5.
    H. Hiramatsu, K. Ueda, H. Ohta, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 87, 211107 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe, Appl. Phys. Lett. 73, 220 (1998)CrossRefGoogle Scholar
  7. 7.
    M. Dekkers, G. Rijnders, D.H.A. Blank, Appl. Phys. Lett. 90, 021903 (2007)CrossRefGoogle Scholar
  8. 8.
    C.H. Sun, D.C. Tsai, Z.C. Chang, E.C. Chen, F.S. Shieu, J. Mater. Sci.: Mater. Electron. 27, 9740 (2016)Google Scholar
  9. 9.
    N. Tsuboi, Y. Takahashi, S. Kobayashi, H. Shimizua, K. Kato, F. Kaneko, J. Phys. Chem. Solids 64, 1671 (2003)CrossRefGoogle Scholar
  10. 10.
    A.N. Banerjee, R. Maity, K.K. Chattopadhyay, Mater. Lett. 58, 10 (2003)CrossRefGoogle Scholar
  11. 11.
    A.N. Banerjee, K.K. Chattopadhyay, Cent. Eur. J. Phys. 6, 57 (2008)Google Scholar
  12. 12.
    H. Kawazoe, M. Yasukawa, Nature 389, 939 (1997)CrossRefGoogle Scholar
  13. 13.
    T. Sato, K. Sue, H. Tsumatori, M. Suzuki, S. Tanaka, A. Kawai-Nakamura, K. Saitoh, K. Aida, T. Hiaki, J. Supercrit. Fluids 46, 173 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Ahmed, C.K. Blakely, J. Prakash, S.R. Bruno, M. Yu, Y. Wu, V.V. Poltavets, J. Alloys Compd. 591, 275 (2014)CrossRefGoogle Scholar
  15. 15.
    D.K. Hwang, K.H. Bang, M.C. Jeong, J.M. Myoung, J. Cryst. Growth 254, 449 (2003)CrossRefGoogle Scholar
  16. 16.
    T. Aoki, Y. Hatanaka, D.C. Look, Appl. Phys. Lett. 76, 3257 (2000)CrossRefGoogle Scholar
  17. 17.
    A. Kudo, H. Yanagi, K. Ueda, H. Hosono, H. Kawazoe, Appl. Phys. Lett. 75, 2851 (1999)CrossRefGoogle Scholar
  18. 18.
    H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Appl. Phys. Lett. 77, 475 (2000)CrossRefGoogle Scholar
  19. 19.
    R.L. Hoffman, J.F. Wager, M.K. Jayaraj, J. Tate, J. Appl. Phys. 90, 5763 (2001)CrossRefGoogle Scholar
  20. 20.
    K. Tonooka, N. Kikuchi, Thin Solid Films 515, 2415 (2006)CrossRefGoogle Scholar
  21. 21.
    A.N. Banerjee, S. Nandy, C.K. Ghosh, K.K. Chattopadhyay, Thin Solid Films 515, 7324 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Liu, H. Wang, J. Xu, M. Ren, L. Yang, J. Ju, J. Mater. Sci.: Mater. Electron. 22, 666 (2011)Google Scholar
  23. 23.
    J. Xu, H. Wang, L. Yang, M. Jiang, S. Wei, T. Zhang, Mater. Sci. Eng. B 167, 182 (2010)CrossRefGoogle Scholar
  24. 24.
    M. Ohashi, Y. Iida, H. Morikawa, J. Am. Ceram. Soc. 85, 270 (2002)CrossRefGoogle Scholar
  25. 25.
    H.F. Jiang, H.C. Lei, X.B. Zhua, G. Li, Z.R. Yanga, W.H. Song, J.M. Dai, Y.P. Sun, Y.K. Fu, J. Alloys Compd. 487, 404 (2009)CrossRefGoogle Scholar
  26. 26.
    J. Li, X. Wang, S. Shi, X. Song, J. Lv, J. Cui, Z. Sun, J. Am. Ceram. Soc. 95, 431 (2012)CrossRefGoogle Scholar
  27. 27.
    I. Costina, R. Franchy, Appl. Phys. Lett. 78, 4139 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations