Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: effect of reactant concentration, reaction temperature and reaction time

Article
  • 34 Downloads

Abstract

Hollow Fe3O4 particles with variable crystal sizes were synthesized by one-step solvothermal method for lightweight and efficient microwave absorber applications. The reactant concentration, reaction temperature and reaction time are three key factors for morphology control of the products and can further influence the microwave absorption properties. The diameters of as-prepared hollow magnetite particles ranged from 200 to 1000 nm, while the shell thickness differed from 35 to 280 nm. It is found that the microwave absorption properties are improved along with the increasing of the hollow structure size which depend on the reaction conditions. The sample prepared at 200 °C for 36 h exhibited an optimal reflection loss of − 55.14 dB at 11.76 GHz with the thickness of 2.07 mm, while possessing the broadest effective bandwidth reaching 4.72 GHz (5.6–10.32 GHz) at 2.49 mm. The excellent microwave absorbing properties of such materials can be attributed to the high magnetic loss and favorable impedance matching property.

Notes

Acknowledgements

This project was financially supported by the National Key Research and Development Program (2016YFA0202900) and Graduate Education Funds of The Army Engineering University of PLA.

References

  1. 1.
    X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016).  https://doi.org/10.1021/acs.chemrev.5b00731 CrossRefGoogle Scholar
  2. 2.
    X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. (2017).  https://doi.org/10.1002/adma.201601759 Google Scholar
  3. 3.
    L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. (2017).  https://doi.org/10.1002/adma.201604563 Google Scholar
  4. 4.
    J. Qi, X. Lai, J. Wang, H. Tang, H. Ren, Y. Yang, Q. Jin, L. Zhang, R. Yu, G. Ma, Z. Su, H. Zhao, D. Wang, Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 44(19), 6749–6773 (2015).  https://doi.org/10.1039/c5cs00344j CrossRefGoogle Scholar
  5. 5.
    L. Yu, H.B. Wu, X.W. Lou, Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 50(2), 293–301 (2017).  https://doi.org/10.1021/acs.accounts.6b00480 CrossRefGoogle Scholar
  6. 6.
    H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017).  https://doi.org/10.1021/acsami.6b15826 CrossRefGoogle Scholar
  7. 7.
    J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem. 54(37), 10889–10893 (2015).  https://doi.org/10.1002/anie.201504242 CrossRefGoogle Scholar
  8. 8.
    H. Yu, H. Fan, B. Yadian, H. Tan, W. Liu, H.H. Hng, Y. Huang, Q. Yan, General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties. ACS Appl. Mater. Interfaces 7(48), 26751–26757 (2015).  https://doi.org/10.1021/acsami.5b08741 CrossRefGoogle Scholar
  9. 9.
    Y.-H. Sun, S. Liu, F.-C. Zhou, J.-M. Nan, Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries. Appl. Surf. Sci. 390, 175–184 (2016).  https://doi.org/10.1016/j.apsusc.2016.08.071 CrossRefGoogle Scholar
  10. 10.
    K.-J. Hwang, C.-H. Hwang, I.-H. Lee, T. Kim, S. Jin, J.-Y. Park, Synthesis and characterization of hollow metal oxide micro-tubes using a biomaterial template. Biomass Bioenergy 68, 62–66 (2014).  https://doi.org/10.1016/j.biombioe.2014.06.004 CrossRefGoogle Scholar
  11. 11.
    L. Duan, X. Zhang, K. Yue, Y. Wu, J. Zhuang, W. Lu, Synthesis and electrochemical property of LiMn2O4 porous hollow nanofiber as cathode for lithium-ion batteries. Nanoscale Res Lett. 12(1), 109 (2017).  https://doi.org/10.1186/s11671-017-1879-1 CrossRefGoogle Scholar
  12. 12.
    X.-Y. Yu, L. Yu, X.W.D. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016).  https://doi.org/10.1002/aenm.201501333 CrossRefGoogle Scholar
  13. 13.
    X. Qi, W. Zheng, G. He, T. Tian, N. Du, L. Wang, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem. Eng. J. 309, 426–434 (2017).  https://doi.org/10.1016/j.cej.2016.10.060 CrossRefGoogle Scholar
  14. 14.
    P. Chen, B. Cui, X. Cui, W. Zhao, Y. Bu, Y. Wang, A microwave-triggered controllable drug delivery system based on hollow-mesoporous cobalt ferrite magnetic nanoparticles. J. Alloy. Compd. 699, 526–533 (2017).  https://doi.org/10.1016/j.jallcom.2016.12.304 CrossRefGoogle Scholar
  15. 15.
    Z.-C. Wu, W.-P. Li, C.-H. Luo, C.-H. Su, C.-S. Yeh, Rattle-type Fe3O4@CuS developed to conduct magnetically guided photoinduced hyperthermia at first and second NIR biological windows. Adv. Funct. Mater. 25(41), 6527–6537 (2015).  https://doi.org/10.1002/adfm.201503015 CrossRefGoogle Scholar
  16. 16.
    X. Lai, J. Li, B.A. Korgel, Z. Dong, Z. Li, F. Su, J. Du, D. Wang, General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. 50(12), 2738–2741 (2011).  https://doi.org/10.1002/anie.201004900 CrossRefGoogle Scholar
  17. 17.
    J. Dui, G. Zhu, S. Zhou, Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As(V) and Cr(VI). ACS Appl. Mater. Interfaces 5(20), 10081–10089 (2013).  https://doi.org/10.1021/am402656t CrossRefGoogle Scholar
  18. 18.
    Y. Wang, P. Ding, C. Wang, Fabrication and lithium storage properties of MnO2 hierarchical hollow cubes. J. Alloy. Compd. 654, 273–279 (2016).  https://doi.org/10.1016/j.jallcom.2015.09.079 CrossRefGoogle Scholar
  19. 19.
    J. Nai, Y. Tian, X. Guan, L. Guo, Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc.. 135(43), 16082–16091 (2013).  https://doi.org/10.1021/ja402751r CrossRefGoogle Scholar
  20. 20.
    S.I.R. Castillo, N.A. Krans, C.E. Pompe, J.H. den Otter, D.M.E. Thies-Weesie, A.P. Philipse, Synthesis method for crystalline hollow titania micron-cubes. Colloids Surf. A. 504, 228–233 (2016).  https://doi.org/10.1016/j.colsurfa.2016.05.079 CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Z. Huang, F. Tang, J. Ren, Ferrite hollow spheres with tunable magnetic properties. Thin Solid Films 515(4), 2555–2561 (2006).  https://doi.org/10.1016/j.tsf.2006.04.049 CrossRefGoogle Scholar
  22. 22.
    C.-R. Lin, I.H. Chen, C.-C. Wang, M.-L. Chen, Synthesis and characterization of magnetic hollow nanocomposite spheres. Acta Mater. 59(17), 6710–6716 (2011).  https://doi.org/10.1016/j.actamat.2011.07.028 CrossRefGoogle Scholar
  23. 23.
    L. Zhang, Y. Sun, W. Jia, S. Ma, B. Song, Y. Li, H. Jiu, J. Liu, Multiple shell hollow CoFe2O4 spheres: synthesis, formation mechanism and properties. Ceram. Int. 40(7), 8997–9002 (2014).  https://doi.org/10.1016/j.ceramint.2014.01.111 CrossRefGoogle Scholar
  24. 24.
    Z.W. Zhao, T. Wen, K. Liang, Y.F. Jiang, X. Zhou, C.C. Shen, A.W. Xu, Carbon-coated Fe3O4/VOx Hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9(4), 3757–3765 (2017).  https://doi.org/10.1021/acsami.6b15110 CrossRefGoogle Scholar
  25. 25.
    H. Xu, W. Wang, Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 46, 1489–1492 (2007).  https://doi.org/10.1002/anie.200603895 CrossRefGoogle Scholar
  26. 26.
    L. Zhao, F. Tao, Z. Quan, X. Zhou, Y. Yuan, J. Hu, Bubble template synthesis of copper sulfide hollow spheres and their applications in lithium ion battery. Mater. Lett. 68, 28–31 (2012).  https://doi.org/10.1016/j.matlet.2011.09.108 CrossRefGoogle Scholar
  27. 27.
    T.H. Le, Y. Yang, L. Yu, T. Gao, Z. Huang, F. Kang, Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J. Appl. Polym. Sci. (2016).  https://doi.org/10.1002/app.43397 Google Scholar
  28. 28.
    H. Lou, J. Wang, Z. Zhao, X. Cai, Y. Hou, Effect of heat treatment on the structure of M-Type BaFe12O19 hollow ceramic microspheres prepared by self-reactive quenching technology and microwave absorption properties. J. Mater. Sci. Mater. Med. 48, 5664–5672 (2013).  https://doi.org/10.1007/s10853-013-7362-1 CrossRefGoogle Scholar
  29. 29.
    C. Zhai, N. Du, H. Zhang, D. Yang, Cobalt–iron cyanide hollow cubes: three-dimensional self-assembly and magnetic properties. J. Alloy. Compd. 509(33), 8382–8386 (2011).  https://doi.org/10.1016/j.jallcom.2011.05.073 CrossRefGoogle Scholar
  30. 30.
    K.Y. Niu, J. Park, H. Zheng, A.P. Alivisatos, Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 13, 5715–5719 (2013).  https://doi.org/10.1021/nl4035362 CrossRefGoogle Scholar
  31. 31.
    B. Zhao, X. Guo, Y. Zhou, T. Su, C. Ma, R. Zhang, Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers. CrystEngComm 19(16), 2178–2186 (2017).  https://doi.org/10.1039/c7ce00235a CrossRefGoogle Scholar
  32. 32.
    L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao, L. Mai, Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. (2017).  https://doi.org/10.1002/adma.201602914 Google Scholar
  33. 33.
    Q. Zeng, P. Chen, Q. Yu, H.R. Chu, X.H. Xiong, D.W. Xu, Q. Wang, Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties. Sci. Rep. 7(1), 8388 (2017).  https://doi.org/10.1038/s41598-017-08293-3 CrossRefGoogle Scholar
  34. 34.
    L. Saini, M.K. Patra, R.K. Jani, G.K. Gupta, A. Dixit, S.R. Vadera, Tunable twin matching frequency (fm1/fm2) behavior of Ni1–xZnxFe2O4/NBR composites over 2–12.4 GHz: a strategic material system for stealth applications. Sci. Rep. 7, 44457 (2017).  https://doi.org/10.1038/srep44457 CrossRefGoogle Scholar
  35. 35.
    F. Wang, X. Wang, J. Zhu, H. Yang, X. Kong, X. Liu, Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties. Sci. Rep. 6, 37892 (2016).  https://doi.org/10.1038/srep37892 CrossRefGoogle Scholar
  36. 36.
    P. He, Z.-L. Hou, K.-L. Zhang, J. Li, K. Yin, S. Feng, S. Bi, Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 52(13), 8258–8267 (2017).  https://doi.org/10.1007/s10853-017-1041-6 CrossRefGoogle Scholar
  37. 37.
    I. Shanenkov, A. Sivkov, A. Ivashutenko, V. Zhuravlev, Q. Guo, L. Li, G. Li, G. Wei, W. Han, Magnetite hollow microspheres with a broad absorption bandwidth of 11.9 GHz: toward promising lightweight electromagnetic microwave absorption. Phys. Chem. Chem. Phys. 19(30), 19975–19983 (2017).  https://doi.org/10.1039/c7cp03292g CrossRefGoogle Scholar
  38. 38.
    C. Shang, G. Ji, W. Liu, X. Zhang, H. Lv, Y. Du, One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application. RSC Adv. 5(98), 80450–80456 (2015).  https://doi.org/10.1039/c5ra15949k CrossRefGoogle Scholar
  39. 39.
    T. Zhang, G. Wen, Y.P. Wang, L. Xia, Monodispersed boron carbonitride hollow spheres with high-performance microwave absorption property. Mater. Res. Bull. 74, 177–181 (2016).  https://doi.org/10.1016/j.materresbull.2015.08.023 CrossRefGoogle Scholar
  40. 40.
    H.-L. Zhu, Z.-F. Xu, H.-Z. Cui, J. Wu, J.-F. Dang, T.-F. Wang, L.-D. Zhang, Surface modification as an effective approach to enhance the microwave absorbing properties of hollow carbon spheres. Mater. Res. Express 3(10), 105020 (2016).  https://doi.org/10.1088/2053-1591/3/10/105020 CrossRefGoogle Scholar
  41. 41.
    C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, Y. Li, Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016).  https://doi.org/10.1016/j.carbon.2016.07.015 CrossRefGoogle Scholar
  42. 42.
    J. Fu, W. Yang, L. Hou, Z. Chen, T. Qiu, H. Yang, Y. Li, Enhanced electromagnetic microwave absorption performance of lightweight bowl-like carbon nanoparticles. Ind. Eng. Chem. Res. 56(40), 11460–11466 (2017).  https://doi.org/10.1021/acs.iecr.7b02860 CrossRefGoogle Scholar
  43. 43.
    J. Qiu, T. Qiu, Fabrication and microwave absorption properties of magnetite nanoparticle–carbon nanotube–hollow carbon fiber composites. Carbon 81, 20–28 (2015).  https://doi.org/10.1016/j.carbon.2014.09.011 CrossRefGoogle Scholar
  44. 44.
    Y. Huang, Y. Wang, Z. Li, Z. Yang, C. Shen, C. He, Effect of pore morphology on the dielectric properties of porous carbons for microwave absorption applications. J. Phys. Chem. C 118(45), 26027–26032 (2014).  https://doi.org/10.1021/jp506999k CrossRefGoogle Scholar
  45. 45.
    Y. Wang, B. Han, N. Chen, D. Deng, H. Guan, Y. Wang, Enhanced microwave absorption properties of MnO2 hollow microspheres consisted of MnO2 nanoribbons synthesized by a facile hydrothermal method. J. Alloys Compd. 676, 224–230 (2016).  https://doi.org/10.1016/j.jallcom.2016.03.158 CrossRefGoogle Scholar
  46. 46.
    G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015).  https://doi.org/10.1016/j.matlet.2015.01.024 CrossRefGoogle Scholar
  47. 47.
    T. Huang, M. He, Y. Zhou, S. Li, B. Ding, W. Pan, S. Huang, Y. Tong, Solvothermal synthesis of flower-like CoS hollow microspheres with excellent microwave absorption properties. RSC Adv. 6(102), 100392–100400 (2016).  https://doi.org/10.1039/c6ra22920d CrossRefGoogle Scholar
  48. 48.
    S.J. Yan, L.N. Wang, T.H. Wang, L.Q. Zhang, Y.F. Li, S.L. Dai, Synthesis and microwave absorption property of graphene oxide/carbon nanotubes modified with cauliflower-like Fe3O4 nanospheres. Appl. Phys. A Mater. (2016).  https://doi.org/10.1007/s00339-016-9769-4 Google Scholar
  49. 49.
    X. Huang, J. Zhang, Z. Liu, T. Sang, B. Song, H. Zhu, C. Wong, Facile preparation and microwave absorption properties of porous hollow BaFe12O19/CoFe2O4 composite microrods. J. Alloys Compd. 648, 1072–1075 (2015).  https://doi.org/10.1016/j.jallcom.2015.07.073 CrossRefGoogle Scholar
  50. 50.
    Z.W. Li, Z.H. Yang, Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites. J. Magn. Magn. Mater. 387, 131–138 (2015).  https://doi.org/10.1016/j.jmmm.2015.03.087 CrossRefGoogle Scholar
  51. 51.
    D. Sarkar, M. Mandal, K. Mandal, Domain controlled magnetic and electric properties of variable sized magnetite nano-hollow spheres. J. Appl. Phys. 112(6), 064318 (2012).  https://doi.org/10.1063/1.4754018 CrossRefGoogle Scholar
  52. 52.
    W. Li, X. Qiao, Q. Zheng, T. Zhang, One-step synthesis of MFe2O4 (M = Fe, Co) hollow spheres by template-free solvothermal method. J. Alloy. Compd. 509(21), 6206–6211 (2011).  https://doi.org/10.1016/j.jallcom.2011.02.157 CrossRefGoogle Scholar
  53. 53.
    S. Torkian, A. Ghasemi, R. Shoja Razavi, Cation distribution and magnetic analysis of wideband microwave absorptive CoxNi1–xFe2O4 ferrites. Ceram. Int. 43(9), 6987–6995 (2017).  https://doi.org/10.1016/j.ceramint.2017.02.124 CrossRefGoogle Scholar
  54. 54.
    F. Wang, J. Liu, J. Kong, Z. Zhang, X. Wang, M. Itoh, K. Machida, Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J. Mater. Chem. 21(12), 4314 (2011).  https://doi.org/10.1039/c0jm02894k CrossRefGoogle Scholar
  55. 55.
    H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem C 3(39), 10232–10241 (2015).  https://doi.org/10.1039/c5tc02512e CrossRefGoogle Scholar
  56. 56.
    S. He, G.-S. Wang, C. Lu, J. Liu, B. Wen, H. Liu, L. Guo, M.-S. Cao, Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A 1(15), 4685 (2013).  https://doi.org/10.1039/c3ta00072a CrossRefGoogle Scholar
  57. 57.
    N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 9(3), 2973–2983 (2017).  https://doi.org/10.1021/acsami.6b13142 CrossRefGoogle Scholar
  58. 58.
    N.F. Colaneri, L.W. Shacklette, EMI shielding measurements of conductive polymer blends. IEEE Trans. Instrum. Meas. 41, 291 (1992)CrossRefGoogle Scholar
  59. 59.
    Y. Naito, K.Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory 19, 65 (1971)CrossRefGoogle Scholar
  60. 60.
    F. Qin, C. Brosseau, A review and nanlysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301 (2012). doi. https://doi.org/10.1063/1.3688435 CrossRefGoogle Scholar
  61. 61.
    L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, G. Li, Z. Sun, C. Chen, Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 9298 (2015).  https://doi.org/10.1038/srep09298 CrossRefGoogle Scholar
  62. 62.
    H. Lv, H. Zhang, J. Zhao, G. Ji, Y. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 9(6), 1813–1822 (2016).  https://doi.org/10.1007/s12274-016-1074-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Science and Technology on Electromagnetic Environmental Effects and Electro-optical EngineeringThe Army Engineering University of PLANanjingPeople’s Republic of China
  2. 2.Department of Materials ScienceFudan UniversityShanghaiPeople’s Republic of China
  3. 3.Troops 96657 of PLABeijingPeople’s Republic of China
  4. 4.National University of Defense TechnologyXi’anPeople’s Republic of China

Personalised recommendations