Advertisement

Solid-state reaction synthesis of β-NaREF4: Yb3+, Er3+ (RE = Y, Lu, La, Gd) phosphors and the upconversion luminescence property under 1550 nm excitation

  • Hongwei Liu
  • Xiyan Zhang
  • Nengli Wang
  • Zhaohui Bai
  • Xing Gao
  • Liping Lu
  • Quansheng Liu
  • Xiaoyun Mi
  • Haiying Sun
  • Xiaochun Wang
Article

Abstract

Well-crystallized NaREF4: Yb3+, Er3+ (RE = Y, Lu, La, Gd) phosphors were synthesized by a solid-state reaction method. X-ray diffraction characterization showed that the synthesized samples were all pure hexagonal phase after a calcination process on the as-prepared precursors at 550 °C for 2 h by using Na2CO3 as a fluxing agent. Upconversion spectral analysis showed that under a 1550 nm laser diode excitation, the samples emitted dominant green emission centered at 540 nm and red emission centered at 654 nm, which corresponded to the 2H11/2/4S3/24I15/2 and 4F9/24I15/2 transition of Er3+ ions, respectively. Color-tunable upconversion luminescence was realized by the variation of Yb3+/Er3+ doping concentration and the types of the host materials, indicating the synthesized hexagonal Yb3+ and Er3+ co-doped NaREF4 phosphors potential applications in many fields, especially in biological imaging and detection.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61307118, 50472027).

References

  1. 1.
    X.Y. Huang, S.Y. Han, W. Huang, X.G. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013)CrossRefGoogle Scholar
  2. 2.
    P. Ramasamy, P. Manivasakan, J. Kim, Upconversion nanophosphors for solar cell applications. RSC Adv. 4, 34873–34895 (2014)CrossRefGoogle Scholar
  3. 3.
    F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)CrossRefGoogle Scholar
  4. 4.
    H. Schäfer, M. Haase, Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011)CrossRefGoogle Scholar
  5. 5.
    Y.W. Seo, B.C. Choi, B.K. Moon, S.H. Park, J.H. Jeong, K.H. Kim, J.H. Kim, Tunable up-conversion luminescence from Er3+/Tm3+/Yb3+ tri-doped Sr2CeO4 phosphors. J. Lumin. 182, 240–245 (2017)CrossRefGoogle Scholar
  6. 6.
    X.M. Li, R. Wang, F. Zhang, D.Y. Zhao, Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 14, 3634–3639 (2014)CrossRefGoogle Scholar
  7. 7.
    Q. Liu, Y. Sun, T.S. Yang, W. Feng, C.G. Li, F.Y. Li, Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 133, 17122–17125 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Chen, N. Kang, T. Xu, D. Wang, L. Ren, X.Q. Guo, Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging. Nanoscale. 7, 5249–5261 (2015)CrossRefGoogle Scholar
  9. 9.
    Y.B. Mao, T. Tran, X. Guo, J.Y. Huang, C.K. Shih, K.L. Wang, J.P. Chang, Luminescence of nanocrystalline erbium-doped yttria. Adv. Funct. Mater. 19, 748–754 (2009)CrossRefGoogle Scholar
  10. 10.
    F. Wang, R.R. Deng, J. Wang, Q.X. Wang, Y. Han, H.M. Zhu, X.Y. Chen, X.G. Liu, Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011)CrossRefGoogle Scholar
  11. 11.
    F. Pandozzi, F. Vetrone, J.C. Boyer, R. Naccache, J.A. Capobianco, A. Speghini, M. Bettinelli, A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals. J. Phys. Chem. B. 109, 17400–17405 (2005)CrossRefGoogle Scholar
  12. 12.
    B.S. Cao, Y.Y. He, L. Zhang, B. Dong, Upconversion properties of Er3+–Yb3+: NaYF4 phosphors with a wide range of Yb3+ concentration. J. Lumin. 135, 128–132 (2013)CrossRefGoogle Scholar
  13. 13.
    F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals. J. Appl. Phys. 96, 661–667 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Pokhrel, A.K. Gangadharan, D.K. Sardar, High upconversion quantum yield at low pump threshold in Er3+/Yb3+ doped La2O2S phosphor. Mater. Lett. 99, 86–89 (2013)CrossRefGoogle Scholar
  15. 15.
    G.Y. Chen, H.C. Liu, G. Somesfalean, H.J. Liang, Z.G. Zhang, Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology. 20, 385704 (2009)CrossRefGoogle Scholar
  16. 16.
    D.M. Yang, P.A. Ma, Z.Y. Hou, Z.Y. Cheng, C.X. Li, J. Lin, Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 44, 1416–1448 (2015)CrossRefGoogle Scholar
  17. 17.
    X.M. Li, F. Zhang, D.Y. Zhao, Highly efficient lanthanide upconverting nanomaterials: progresses and challenges. Nano Today. 8, 643–676 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.P. Li, J.H. Zhang, Y.S. Luo, X. Zhang, Z.D. Hao, X.J. Wang, Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals. J. Mater. Chem. 21, 2895–2900 (2011)CrossRefGoogle Scholar
  19. 19.
    X.M. Yin, H. Wang, M.M. Xing, Y. Fu, Y. Tian, T. Jiang, X.X. Luo, High color purity red emission of Y2Ti2O7: Yb3+, Er3+ under 1550 and 980 nm excitation. J. Lumin. 182, 183–188 (2017)CrossRefGoogle Scholar
  20. 20.
    G.A. Kumar, M. Pokhrel, D.K. Sardar, Intense visible and near infrared upconversion in M2O2S: Er (M = Y, Gd, La) phosphor under 1550 nm excitation. Mater. Lett. 68, 395–398 (2012)CrossRefGoogle Scholar
  21. 21.
    W.G. Yu, Y. Tian, M.M. Xing, Y. Fu, H. Zhang, X.X. Luo, Up-conversion luminescence of NaY(WO4)2: Yb, Er under 1550 and 980 nm excitation. Mater. Res. Bull. 80, 223–229 (2016)CrossRefGoogle Scholar
  22. 22.
    G.T. Xiang, J.H. Zhang, Z.D. Hao, X. Zhang, Y.S. Luo, S.Z. Lü, H.F. Zhao, Transition to cubic phase and enhancement of green upconversion emission by adding La3+ ions in hexagonal NaLuF4: Yb3+/Er3+ nanocrystals. CrystEngComm 16, 2499–2507 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Wang, H.W. Song, W. Xu, B. Dong, S. Xu, B.T. Chen, W. Yu, S. Zhang, Phase transition, size control and color tuning of NaREF4:Yb3+, Er3+ (RE = Y, Lu) nanocrystals. Nanoscale 5, 3412–3420 (2013)CrossRefGoogle Scholar
  24. 24.
    Q. Cheng, J.H. Sui, W. Cai, Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. Nanoscale 4, 779–784 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Wang, J. Feng, S.Y. Song, H.J. Zhang, Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging. CrystEngComm 15, 7142–7151 (2013)CrossRefGoogle Scholar
  26. 26.
    D.D. Li, Q.Y. Shao, Y. Dong, J.Q. Jiang, A facile synthesis of small-sized and monodisperse hexagonal NaYF4: Er3+,Yb3+ nanocrystals. Chem. Commun. 50, 15316–15318 (2014)CrossRefGoogle Scholar
  27. 27.
    Q.Q. Su, S.Y. Han, X.J. Xie, H.M. Zhu, H.Y. Chen, C.K. Chen, R.S. Liu, X.Y. Chen, F. Wang, X.G. Liu, The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 134, 20849–20857 (2012)CrossRefGoogle Scholar
  28. 28.
    G.Y. Chen, H.L. Qiu, R.W. Fan, S.W. Hao, S. Tan, C.H. Yang, G. Han, Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J. Mater. Chem. 22, 20190–20196 (2012)CrossRefGoogle Scholar
  29. 29.
    F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3: Er3+. J. Phys. Chem. B 107, 1107–1112 (2003)CrossRefGoogle Scholar
  30. 30.
    H. Guo, Y.M. Qiao, Preparation, characterization, and strong upconversion of monodisperse Y2O3: Er3+, Yb3+ microspheres. Opt. Mater. 31, 583–589 (2009)CrossRefGoogle Scholar
  31. 31.
    F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3: Er3+. Chem. Mater. 15, 2737–2743 (2003)CrossRefGoogle Scholar
  32. 32.
    F. Shi, J.S. Wang, X.S. Zhai, D. Zhao, W.P. Qin, Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrystEngComm 13, 3782–3787 (2011)CrossRefGoogle Scholar
  33. 33.
    X.Y. Li, S.S. Zhou, G.C. Jiang, W.T. Wei, Y.H. Chen, M. Yin, Blue upconversion of Tm3+ using Yb3+ as energy transfer bridge under 1532 nm excitation in Er3+, Yb3+,Tm3+ tri-doped CaMoO4. J. Rare Earths. 33, 475–479 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Wang, M.M. Xing, X.X. Luo, X.L. Zhou, Y. Fu, T. Jiang, Y. Peng, Y.B. Ma, X.L. Duan, Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 µm and 980 nm excitation. J. Alloys Compd. 587, 344–348 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongwei Liu
    • 1
  • Xiyan Zhang
    • 1
  • Nengli Wang
    • 1
  • Zhaohui Bai
    • 1
  • Xing Gao
    • 1
  • Liping Lu
    • 1
  • Quansheng Liu
    • 1
  • Xiaoyun Mi
    • 1
  • Haiying Sun
    • 1
  • Xiaochun Wang
    • 1
  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunChina

Personalised recommendations