Improving thin film flexible supercapacitor electrode properties using ion-track technology

  • Petar Laušević
  • Predrag Pejović
  • Dragana Žugić
  • Yuri Kochnev
  • Pavel Apel
  • Zoran Laušević


A novel self-supporting carbon thin film flexible supercapacitor electrode with high volumetric and areal capacitance was developed. The increase in capacitance performance is achieved by introducing channels across the carbon thin film using ion-track technology. In the first step of the electrode synthesis, latent tracks are inscribed in the starting polyimide (Kapton) foil by irradiation with 253 MeV Kr ions. Next, macropores in the form of cylindrical channels are formed by selective chemical etching with NaOCl along the ion tracks, creating ion-track polymer. With subsequent carbonization and activation of the ion-track polymer, activated ion-track carbon is produced. A range of samples are obtained by varying the chemical etching time of the irradiated polymer. In addition to channel formation the chemical etching time influences the composition of surface functional groups. The best results are obtained by chemical etching for 40 min, the thickness of the sample is 21 µm with channel density 2.4 × 106 cm−2 and average channel diameter 430 nm. Beside cylindrical macro channels this material is mainly microporous with 0.62 nm pore diameter and shows the highest areal (494 mF/cm2), volumetric (224 F/cm3) and gravimetric (178 F/g) capacitance. As a consequence of channel formation, the rate capability of the supercapacitor was also increased.



The authors acknowledge the financial support provided by the Ministry of Education, Science and Technological Development of the Republic of Serbia through projects: III 45006; OI 172045 and the project within the Cooperation Agreement between the Joint Institute for Nuclear Research (JINR), Dubna, Russian Federation, and the Ministry of Education, Science and Technological Development of the Republic of Serbia. SEM images done courteously by Lizunov N.E., JINR, Dubna.


  1. 1.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. (Springer, New York, 2013)Google Scholar
  3. 3.
    Y. Gogotsi, P. Simon, Sci. Mag. 334, 917 (2011)Google Scholar
  4. 4.
    Q. Wang, J. Yan, Z. Fan, Energy Environ. Sci. 9, 729 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Zhang, W. Lv, Y. Tao, Q.-H. Yang, Energy Environ. Sci. 8, 1390 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano. 7, 4042 (2013)CrossRefGoogle Scholar
  7. 7.
    D. Zhang, M. Miao, H. Niu, Z. Wei, ACS Nano. 8, 4571 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Carbon N. Y. 46, 1475 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Sun, C. Wang, D. Jiao, M. Zhu, S. Lv, J. Xiang, C. Qin, J. Mater. Sci. Mater. Electron. 28, 8993 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Liu, Y. Chen, J. Zhang, J. Mater. Sci. Mater. Electron. 28, 9301 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Zhou, F. Pu, Z. Wang, S. Guan, Carbon N. Y. 68, 185 (2014)CrossRefGoogle Scholar
  12. 12.
    Q. Wang, J. Yan, Z. Fan, Electrochim. Acta. 146, 548 (2014)CrossRefGoogle Scholar
  13. 13.
    Z. Laušević, P.Y. Apel, J.B. Krstić, I.V. Blonskaya, Carbon N. Y. 64, 456 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science. 313, 1760 (2006)CrossRefGoogle Scholar
  15. 15.
    D.T.L. Galhena, B.C. Bayer, S. Hofmann, G.A.J. Amaratunga, ACS Nano. 10, 747 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Simon, Y. Gogotsi, Acc. Chem. Res. 46, 1094 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Song, J. Zhao, M. Wang, J. Mullavey, Y. Zhu, Z. Geng, D. Chen, Y. Ding, K. Moon, M. Liu, C.-P. Wong, Nano Energy. 31, 183 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Zhang, K. Wang, X. Zhang, H. Lin, X. Sun, C. Li, Y. Ma, J. Mater. Chem. A. 3, 11277 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Fic, G. Lota, M. Meller, E. Frackowiak, Energy Environ. Sci. 5, 5842 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Apel, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 208, 11 (2003)CrossRefGoogle Scholar
  21. 21.
    B.E. Fischer, R. Spohr, Rev. Mod. Phys. 55, 907 (1983)CrossRefGoogle Scholar
  22. 22.
    C. Trautmann, W. Brüchle, R. Spohr, J. Vetter, N. Angert, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 111, 70 (1996)CrossRefGoogle Scholar
  23. 23.
    L. Klintberg, M. Lindeberg, G. Thornell, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 184, 536 (2001)CrossRefGoogle Scholar
  24. 24.
    E.M.V. Hoek, V.V. Tarabara, Encyclopedia of Membrane Science and Technology. (Wiley, Hoboken, NJ, 2013)CrossRefGoogle Scholar
  25. 25.
    H. Kawada, K. Ando, T. Tsuji, Y. Shimakura, Y. Nakamura, J. Chargui, M. Hagihara, H. Itagaki, T. Shimizu, S. Inokuchi, S. Kato, T. Hotta, Exp. Hematol. 27, 904 (1999)CrossRefGoogle Scholar
  26. 26.
    L. Alfonta, O. Bukelman, A. Chandra, W.R. Fahrner, D. Fink, D. Fuks, V. Golovanov, V. Hnatowicz, K. Hoppe, A. Kiv, I. Klinkovich, M. Landau, J.R. Morante, N.V. Tkachenko, J. Vacík, M. Valden, Radiat. Eff. Defects Solids. 164, 431 (2009)CrossRefGoogle Scholar
  27. 27.
    M.E. Toimil-Molares, Beilstein J. Nanotechnol. 3, 860 (2012)CrossRefGoogle Scholar
  28. 28.
    F. Muench, M. Oezaslan, T. Seidl, S. Lauterbach, P. Strasser, H.-J. Kleebe, W. Ensinger, Appl. Phys. A. 105, 847 (2011)CrossRefGoogle Scholar
  29. 29.
    Z. Laušević, P.Y. Apel, I.V. Blonskaya, Carbon N. Y. 49, 4948 (2011)CrossRefGoogle Scholar
  30. 30.
    F. Muench, T. Seidl, M. Rauber, B. Peter, J. Brötz, M. Krause, C. Trautmann, C. Roth, S. Katusic, W. Ensinger, Mater. Chem. Phys. 148, 846 (2014)CrossRefGoogle Scholar
  31. 31.
    F. Stoeckli, P. Rebstein, L. Ballerini, Carbon N. Y. 28, 907 (1990)CrossRefGoogle Scholar
  32. 32.
    T. Xing, Y. Zheng, L.H. Li, B.C.C. Cowie, D. Gunzelmann, S.Z. Qiao, S. Huang, Y. Chen, ACS Nano. 8, 6856 (2014)CrossRefGoogle Scholar
  33. 33.
    C. Bourgerette, A. Oberlin, M. Inagaki, J. Mater. Res. 7, 1158 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, F. Xu, J. Li, Y. Yuan, X. He, Y. Li, ACS Nano. 9, 8933 (2015)CrossRefGoogle Scholar
  35. 35.
    A. Ektessabi, S. Hakamata, Thin Solid Films. 377–378, 621 (2000)CrossRefGoogle Scholar
  36. 36.
    F. Kapteijn, J.A. Moulijn, S. Matzner, H.-P. Boehm, Carbon N. Y. 37, 1143 (1999)CrossRefGoogle Scholar
  37. 37.
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19, 438 (2009)CrossRefGoogle Scholar
  38. 38.
    D. Mang, H.P. Boehm, K. Stanczyk, H. Marsh, Carbon N. Y. 30, 391 (1992)CrossRefGoogle Scholar
  39. 39.
    A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, J. Phys. Chem. C. 115, 17009 (2011)CrossRefGoogle Scholar
  40. 40.
    N. Jung, S. Kwon, D. Lee, D.-M. Yoon, Y.M. Park, A. Benayad, J.-Y. Choi, J.S. Park, Adv. Mater. 25, 6854 (2013)CrossRefGoogle Scholar
  41. 41.
    L. Huang, C. Li, G. Shi, J. Mater. Chem. A. 2, 968 (2014)CrossRefGoogle Scholar
  42. 42.
    X. Han, M.R. Funk, F. Shen, Y.-C. Chen, Y. Li, C.J. Campbell, J. Dai, X. Yang, J.-W. Kim, Y. Liao, J.W. Connell, V. Barone, Z. Chen, Y. Lin, L. Hu, ACS Nano. 8, 8255 (2014)CrossRefGoogle Scholar
  43. 43.
    L. Jiang, L. Sheng, C. Long, Z. Fan, Nano Energy. 11, 471 (2015)CrossRefGoogle Scholar
  44. 44.
    J. Yan, Q. Wang, C. Lin, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1400500 (2014)CrossRefGoogle Scholar
  45. 45.
    H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong, C. He, Carbon N. Y. 100, 151 (2016)CrossRefGoogle Scholar
  46. 46.
    X. Ye, Q. Zhou, C. Jia, Z. Tang, Y. Zhu, Z. Wan, Carbon N. Y. 114, 424 (2017)CrossRefGoogle Scholar
  47. 47.
    X. Yu, J. Wang, Z.-H. Huang, W. Shen, F. Kang, Electrochem. Commun. 36, 66 (2013)CrossRefGoogle Scholar
  48. 48.
    P.L. Taberna, P. Simon, J.F. Fauvarque, J. Electrochem. Soc. 150, A292 (2003)CrossRefGoogle Scholar
  49. 49.
    J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, J. Power Sources. 158, 765 (2006)CrossRefGoogle Scholar
  50. 50.
    J.H. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J.W. Choi, ACS Nano. 7, 9366 (2013)CrossRefGoogle Scholar
  51. 51.
    W.-H. Qu, Y.-Y. Xu, A.-H. Lu, X.-Q. Zhang, W.-C. Li, Bioresour. Technol. 189, 285 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Petar Laušević
    • 1
    • 2
  • Predrag Pejović
    • 2
  • Dragana Žugić
    • 1
  • Yuri Kochnev
    • 3
  • Pavel Apel
    • 3
  • Zoran Laušević
    • 1
  1. 1.Laboratory of Physical Chemistry, Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  3. 3.Flerov Laboratory of Nuclear ReactionsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations