Influence of morphology on luminescence properties of xenotime-type phosphors NaYP2O7:Eu3+ synthesized via solid state and citrate-gel routes

  • T. S. Sreena
  • P. Prabhakar Rao
  • K. N. Ajmal
  • Athira K. V. Raj
Article
  • 14 Downloads

Abstract

A series of Eu3+ activated xenotime type rare earth phosphate NaYP2O7 based orange–red emitting phosphors have been prepared via solid state (SS) and citrate gel (CG) methods. The morphological variation of the developed phosphors concerning synthesis method and heat treatment has significantly influenced the luminescence properties. The phosphors synthesized by the CG route reveals the formation of homogeneous powder with small particles along with uniform size. The developed phosphors exhibit intense orange–red emission under 394 nm near UV excitation with a full width half maximum ~ 2 nm. Compared with the phosphors synthesized by SS route, the phosphors obtained by CG method possess enhanced and sharper orange–red emission with longer lifetimes due to the 5D07F1–2 transitions. The developed narrow red emitting phosphors have better emission intensity in comparison with commercially available Y2O3:Eu3+ red phosphors. Thus, these phosphors could be a suitable candidate for solid state lighting applications for the fabrication of white light emitting diodes.

Notes

Acknowledgements

One of the authors, T. S. Sreena would like to acknowledge Department of Science and Technology (DST) INSPIRE Programme, Council of Scientific and Industrial Research (CSIR), Govt. of India for the research facilities and financial support.

References

  1. 1.
    H. Chander, Mater. Sci. Eng. R 49, 113–155 (2005)CrossRefGoogle Scholar
  2. 2.
    B. Yan, J. Gu, X. Xiao, J. Nanopart. Res. 12, 2145–2152 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Thakur, A.K. Gathania, J. Mater. Sci. 27, 1988–1993 (2016)Google Scholar
  4. 4.
    S. Thakur, A.K. Gathania, J. Electron. Mater. 44, 3444–3449 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Thakur, N. Dhiman, A. Sharma, A.K. Gathania, J. Electron. Mater. 46, 2085–2089 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Wang, Y. Wang, Mater. Sci. Eng. B 133, 218–221 (2006)CrossRefGoogle Scholar
  7. 7.
    D.A. McQuarrie, J.D. Simon, Physical Chemistry: A Molecular Approach, (University Science Books, Sausalito, 1997)Google Scholar
  8. 8.
    G. Blasse, G. VanKeulen, Chem. Phys. Lett. 124, 534–537 (1986)CrossRefGoogle Scholar
  9. 9.
    G. Blasse, B. Grabmaier, Luminescent Materials, (Springer, New York, 1994) pp. 33–70CrossRefGoogle Scholar
  10. 10.
    S. Thakur, A.K. Gathania, Indian J. Phys. 89, 973–979 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Thakur, A.K. Gathania, J. Fluoresc. 25, 657–661 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Jia, Chem. Eng. Commun. 194, 1666–1687 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Zhu, H.Y.D. Jin, J. Nanopart. Res. 10, 1149–1154 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Henglein, Chem. Rev. 89, 1861–1873 (1989)CrossRefGoogle Scholar
  15. 15.
    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. R 71, 1–34 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Hussin, S. Hamdan, D.N. Fazliana, A. Halim, M.S. Husin, Mater. Chem. Phys. 121, 37–41 (2010)CrossRefGoogle Scholar
  17. 17.
    J.L. Yuan, H. Zhang, H.H. Chena, X.X. Yanga, J.T. Zhaoa, M. Gu, J. Solid State Chem. 180, 3381–3387 (2007)CrossRefGoogle Scholar
  18. 18.
    D. Wisniewski, A.J. Wojtowicz, W. Drozdowski, J.M. Farmer, L.A. Boatner, Cryst. Res. Technol. 38, 275–282 (2003)CrossRefGoogle Scholar
  19. 19.
    A. Jouini, J.C. Gacon, M. Ferid, M. Trabelsi-Ayadi, Opt. Mater. 24, 175–180 (2003)CrossRefGoogle Scholar
  20. 20.
    M.R. Li, W. Liu, H.H. Chen, X.X. Yang, Z.B. Wei, D.H. Cao, M. Gu, J.-T. Zhao, Eur. J. Inorg. Chem. 23, 4693–4696 (2005)CrossRefGoogle Scholar
  21. 21.
    J.L. Yuan, X.J. Wang, D.B. Xiong, C.J. Duan, J.T. Zhao, Y.B. Fu. G.B. Zhang, C.S. Shi, J. Lumin. 126, 130–134 (2007)CrossRefGoogle Scholar
  22. 22.
    C.W.E. van Eijk, Nucl. Instrum. Meth. A .460, 1–246 (2001)CrossRefGoogle Scholar
  23. 23.
    J.M. Nedelec, D. Avignant, R. Mahiou, Chem. Mater. 14, 651–655 (2002)CrossRefGoogle Scholar
  24. 24.
    V. Sivakumar, U.V. Varadaraju, Electrochem. Solid State Lett. 9, H35–H38 (2006)Google Scholar
  25. 25.
    V. Sivakumar, U.V. Varadaraju, J. Electrochem. Soc. 154, J28–J31 (2007)Google Scholar
  26. 26.
    S. Fujihara, K. Tokumo, Chem. Mater. 17, 5587–5593 (2005)CrossRefGoogle Scholar
  27. 27.
    Q. Ma, A. Zhang, M. Lu, Y. Zhou, Z. Qiu, G. Zhou, J. Phys. Chem. B 111, 12693–12699 (2007)CrossRefGoogle Scholar
  28. 28.
    E. Nakazawa, J. Lumin. 100, 89–96 (2002)CrossRefGoogle Scholar
  29. 29.
    H. Xiong, J. Dong, J. Yang, Y. Liu, H. Song, S. Gan, RSC Adv. 6, 98208–98215 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Yu, J. Lin, J. Fu, H.J. Zhang, Y.C. Han, J. Mater. Chem. 13, 1413–1419 (2003)CrossRefGoogle Scholar
  31. 31.
    C.C. Lin, R.S. Liu, J. Phys. Chem. Lett. 2, 1268–1277 (2011)CrossRefGoogle Scholar
  32. 32.
    G.S.R. Raju, H.C. Jung, J.Y. Park, B.K. Moon, R. Balakrishnaiah, J.H. Jeong, J.H. Kim, Sens. Actuators B Chem. 146, 395–402 (2010)CrossRefGoogle Scholar
  33. 33.
    Z. Fu, S. Zhou, T. Pan, S. Zhang, J. Lumin. 124, 213–216 (2007)CrossRefGoogle Scholar
  34. 34.
    M.L. Zhao, G.S. Li, J. Zheng, L.P. Li, H. Wang, L.S. Yang, Cryst. Eng. Commun. 13, 6251–6257 (2011)CrossRefGoogle Scholar
  35. 35.
    H. Lin, S. Tanabe, L. Lin, D.L. Yang, K. Liu, W.H. Wong, J.Y. Yu, E.Y.B. Pun, Phys. Lett. A 358, 474–477 (2006)CrossRefGoogle Scholar
  36. 36.
    C. Guo, W. Zhang, L. Luan, T. Chen, H. Cheng, D. Huang, Sens. Actuators B 133, 33–41 (2008)CrossRefGoogle Scholar
  37. 37.
    F.N. Shi, J. Meng, Y.F. Ren, J. Phys. Chem. Solids 59, 105–110 (1998)CrossRefGoogle Scholar
  38. 38.
    U. Rambabu, S. Buddhudu, Opt. Mater. 17, 401–408 (2001)CrossRefGoogle Scholar
  39. 39.
    A.K.V. Raj, P.P. Rao, T.S. Sreena, S. Sameera, V. James, U.A. Renju, Phys. Chem. Chem. Phys. 16, 23699–23710 (2014)CrossRefGoogle Scholar
  40. 40.
    T.S. Sreena, P.P. Rao, T.L. Francis, A.K.V. Raj, P.S. Babu, Dalton Trans. 44, 8718–8728 (2015)CrossRefGoogle Scholar
  41. 41.
    Z.L. Fu, S.H. Zhou, Y.N. Yu, S.Y. Zhang, J. Phys. Chem. B 109, 23320–23325 (2005)CrossRefGoogle Scholar
  42. 42.
    J. Dexpert-Ghys, M.D. Faucher, R. Mauricot, J. Lumin. 69, 203–211 (1996)CrossRefGoogle Scholar
  43. 43.
    H.K. Yang, J.H. Jeong, J. Phys. Chem. C 114, 226–230 (2010)CrossRefGoogle Scholar
  44. 44.
    D. Wen, J. Feng, J. Li, J. Shi, M. Wu, Q. Su, J. Phys. Chem. C 3, 2107–2114 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. S. Sreena
    • 1
  • P. Prabhakar Rao
    • 1
  • K. N. Ajmal
    • 1
  • Athira K. V. Raj
    • 1
  1. 1.Materials Science and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST)TrivandrumIndia

Personalised recommendations