Skip to main content
Log in

Synthesis and dielectric properties of Cr-substituted CeO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Chromium doped ceria nanoparticles have been synthesized by using a novel solution combustion method with chromium nitrate hexahydrate as oxidizers and glycine as a fuel. The main objective of the present study is to find the effect of chromium on structural, optical, dielectric properties and ac- conductivity of cerium oxide nanoparticles (CeO2 NPs). The prepared samples were characterized by various physicochemical techniques such as UV–Vis absorption spectra, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDS) analysis. The powder XRD patterns confirm the cubic fluorite structure of CeO2 NPs. The UV–Vis absorption spectra showed that the doping causes the red shift of absorption peaks. The optical band gap of all samples has been measured by Tauc plot, which is found to be decreases with chromium concentration. The uniform shaped NPs with the range of ~ 20 nm is observed by FESEM images. EDS analysis confirms the expected elemental composition of Ce1−xCrxO2 NPs. The dielectric constant ɛ′, dielectric loss factor (tanδ) and AC conductivity of the samples were studied as function of frequency range from 20 Hz to 3 MHz and found to be decreases with increasing the chromium content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Zia, S. Ahmed, N.A. Shah, M. Anis-ur-Rehman, E.U. Khan, M. Basit, Phys. B 473, 42 (2015)

    CAS  Google Scholar 

  2. O. Gurbuz, M. Okutan, Appl. Surf. Sci. 387, 1211 (2016)

    CAS  Google Scholar 

  3. D. Mangalam, D.M. Prabaharana, K. Sadaiyandib, M. Mahendran, S. Sagadevan, Mater. Res. 19(2), 478 (2016)

    Google Scholar 

  4. A.I. Ali, A.H. Ammar, A. Abdel, Moez, Superlattices Microstruct. 65, 285 (2014)

    CAS  Google Scholar 

  5. M. Gilliot, A. Hadjadj, J. Martin, Thin Solid Films. 597, 65 (2015)

    CAS  Google Scholar 

  6. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Mater. Sci. Eng. B 177, 428 (2012)

    CAS  Google Scholar 

  7. N.I. Santha, M.T. Sebastian, N.M. Alford, K. Sarma, R.C. Pullar, S. Kamba, A. Pashkin, P. Samukhina, J. Petzelt, J. Am. Ceram. Soc. 87, 1233 (2004)

    CAS  Google Scholar 

  8. D.H. Kim, S.K. Lim, C. An, Mater. Lett. 52, 240 (2002)

    CAS  Google Scholar 

  9. R. Zamiri, H.A. Ahangar, A. Kaushal, A. Zakaria, G. Zamiri, D. Tobaldi, J.M.F. Ferreira, PLoS ONE. 10 (2015)

  10. R. Rangel, G.J. Lopez Mercado, P. Bartolo-Perez, R. Garcia, Sci. Adv. Mater. 4, 573 (2012)

    CAS  Google Scholar 

  11. N. Rahemi, M. Haghighi, A.A. Babaluo, M.F. Jafari, P.J. Estifaee, Nanosci. Nanotechnol. 13, 4896 (2013)

    CAS  Google Scholar 

  12. G. Cheng, J. Xiong, F.J. Stadler, Powder Technol. 249, 89 (2013)

    CAS  Google Scholar 

  13. Y. Zhu, X. Quan, F. Chen, X. Fan, Y. Feng, Sci. Adv. Mater. 4, 119 (2012)

    Google Scholar 

  14. S. Tsunekawa, R. Sivamohan, T. Ohsuna, A. Kasuya, H. Takahashi, K. Tohji, Mater. Sci. Forum. 439, 315 (1999)

    Google Scholar 

  15. K.S. Ranjith, P. Saravanan, S. Chen, C. Dong, C.L. Chen, S. Chen, K. Asokan, R. Thangavelu, R. Kumar, J. Phys. Chem. C 118, 27039 (2014)

    CAS  Google Scholar 

  16. T.K. Gupta, J. Am. Ceram. Soc 73, 1817 (1990)

    CAS  Google Scholar 

  17. S. Bernik, N. Daneu, A. Recnik, J. Eur. Ceram. Soc 24, 3703 (2004)

    CAS  Google Scholar 

  18. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today 7, 34 (2004)

    CAS  Google Scholar 

  19. T. Watari, R.C. Bradt, J. Ceram. Soc. Jpn. 101, 1085 (1993)

    CAS  Google Scholar 

  20. S. Bernik, P. Zupancic, D. Kolar, J. Eur. Ceram. Soc. 19, 709 (1999)

    CAS  Google Scholar 

  21. S. Phokha, D. Prabhakaran, A. Boothroyd, S. Pinitsoontorn, S. Maensiri, Microelectron. Eng. 126, 93 (2014)

    CAS  Google Scholar 

  22. S.K. Alla, E.V.P. Komarala, R.K. Mandal, N.K. Prasad, Mater. Chem. Phys. 182, 280 (2016)

    CAS  Google Scholar 

  23. N.S. Ferreira, L.G. Abracado, M.A. Macedo, Phys. B 407, 3218 (2012)

    CAS  Google Scholar 

  24. S. Phokha, S. Pinitsoontorn, S. Maensiri, J. Appl. Phys. 112, 113904 (2012)

    Google Scholar 

  25. S.-Y. Chen, C.-H. Tsai, M.-Z. Huang, D.-C. Yan, T.-W. Huang, A. Gloter, C.L. Chen, H.-J. Lin, C.-T. Chen, C.-L. Dong, J. Phys. Chem. C 116, 8707 (2012)

    CAS  Google Scholar 

  26. R.D. Purohit, B.P. Sharma, K.T. Pillai, A.K. Tyagi, J. Mat. Res. Bull. 36, 2711 (2001)

    CAS  Google Scholar 

  27. M. Hirano, M. Inagaki, J. Mater. Chem. 10, 473 (2000)

    CAS  Google Scholar 

  28. S. Yang, L. Gao, J. Am. Chem. Soc. 128, 933 (2006)

    Google Scholar 

  29. H. Xiao, Z. Ai, L. Zhang, J. Phys. Chem. C 113, 16625 (2009)

    CAS  Google Scholar 

  30. L. Yin, Y. Wang, G. Pang, Y. Koltypin, A. Gedanken, J. Colloid Interface Sci. 246, 78 (2002)

    CAS  Google Scholar 

  31. S. Anushree, C. Kumar, Sharma, Mater. Chem. Phys. 155, 223 (2015)

    CAS  Google Scholar 

  32. Y.Q. Song, H.W. Zhang, Q.Y. Wen, J. Appl. Phys. 102, 043912 (2007)

    Google Scholar 

  33. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74, 161306 (2006)

    Google Scholar 

  34. Q.-Y. Wen, H.-W. Zhang, Y.-Q. Song, Q.-H. Yang, H. Zhu, J.Q. Xiao, J. Phys. 19, 246205 (2007)

    Google Scholar 

  35. S.K. Alla, R.K. Mandal, N.K. Prasad, RSC Adv. 105, 102821 (2016)

    Google Scholar 

  36. Newtons 4th Ltd., Frequency response analyzer, guide to PSM1735—IAI compensation, guide to IAI Calibration (2008)

  37. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, Acta Mater. 55, 6561 (2007)

    CAS  Google Scholar 

  38. V.L. Mathe, K. Patankar, S.D. Lotke, P.B. Joshi, S.A. Patil, Bull. Mater. Sci. 25, 347 (2002)

    CAS  Google Scholar 

  39. G. Rana, U.C. Johri, K. Asokan, Euro. Phys. Lett. 103, 17008 (2013)

    Google Scholar 

  40. S. Sagadevan, Am. J. Nanosci. Nanotechnol. 1, 27 (2013)

    Google Scholar 

  41. Y.S. Asar, T. Asar, S. Altındal, S. Özçelik, J. Alloy. Compd. 628, 442 (2015)

    Google Scholar 

  42. H. Young, Y. Lin, H. Wang, F. Luo, Mater. Manuf. Process. 23, 489 (2008)

    Google Scholar 

  43. O. Gürbüz, M. Okutan, Appl. Surf. Sci. 387, 1211 (2016)

    Google Scholar 

  44. X. Li, Y. Huang, L. Xu, L. Liu, Y. Wang, X. Cao, C. Meng, Z. Wang, Mater. Res. Bull. 68, 87 (2015)

    CAS  Google Scholar 

  45. M. Ashokkumar, S. Muthukumaran, J. Magn. Magn. Mater. 374, 61 (2015)

    CAS  Google Scholar 

  46. M. Okutan, Y. Yerli, S.E. San, F. Yılmaz, O. Günaydın, M. Durak, Synth. Met. 157, 368 (2007)

    CAS  Google Scholar 

  47. N. Jahan, A.K.M. Zakaria, F.-U.-Z. Chowdhury, S. Aktar, S.M. Yunus, D.K. Saha, M.N.I. Khan, in Proceedings of International Conference on Advances in Physics (2015)

  48. R.V. Mangalaraja, P. Manohar, F.D. Gnanam, J. Mater. Sci. 39, 2037 (2004)

    CAS  Google Scholar 

  49. A. Azam, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Appl. Phys. 108, 6 (2010)

    Google Scholar 

  50. A. Tataroglu, S. Altındal, M.M. Bulbul, Microelectron. Eng. 81, 140 (2005)

    CAS  Google Scholar 

  51. H. MahmoudiChenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian, Curr. Appl. Phys. 11, 1071 (2011)

    Google Scholar 

  52. A.M.M. Farea, S. Kumar, K.M. Batoo, Y. Ali, Physica B 403, 684 (2008)

    CAS  Google Scholar 

  53. K.M. Batoo, S. Kumar, C.G. Lee, Curr. Appl. Phys. 9, 107 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Madhusudhana R, Assistant professor, Centre for Nanotechnology, the National Institute of Engineering, Mysure for providing XRD, EDS and FESEM data’s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok R. Lamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harish, B.M., Avinash, B.S., Chaturmukha, V.S. et al. Synthesis and dielectric properties of Cr-substituted CeO2 nanoparticles. J Mater Sci: Mater Electron 29, 7402–7411 (2018). https://doi.org/10.1007/s10854-018-8731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8731-y

Navigation