Advertisement

Impact of sequential annealing on the characteristics of thermally evaporated semiconductor Cu2Se/ZnSe/Cu2Se sandwich structure

  • P. Issac Nelson
  • R. Rathes Kannan
  • A. Mohan
  • S. Rajesh
  • B. Vidhya
Article

Abstract

The paper deals with the deposition of Cu2Se/ZnSe/Cu2Se sandwich structure using facile thermal evaporation and the impact of sequential annealing on the characteristics of sandwich structure. XRD reveals the polycrystalline nature of sandwich structures. Laser Raman was carried out to explore the crystalline phase of sandwich structure. SEM analysis shows good crystalline nature with well-distinguished particles over the ZnSe layer. Cross-sectional FESEM image confirms the merged layer with no distinguished separate monolayers. Photoluminescence emission spectra of films exhibit violet emission and blue shifts upon annealing. Shifts and splits in optical bandgap values were observed upon annealing. Hall measurements infer p-type conductivity for the sandwich structure.

References

  1. 1.
    F. Meillaud, M. Boccard, G. Bugnon, M. Despeisse, S. Ha, F. Haug, M. Stuckelberger, C. Ballif, J. Persoz, J. Schu, Recent advances and remaining challenges in thin-film silicon photovoltaic technology. Mater. Today (2015).  https://doi.org/10.1016/j.mattod.2015.03.002 Google Scholar
  2. 2.
    A.G. Aberle, Thin-film solar cells. Thin Solid Films. (2009)  https://doi.org/10.1016/j.tsf.2009.03.056 Google Scholar
  3. 3.
    Y. Hishikawa, W. Warta, M.A. Green, D.H. Levi, J. Hohl, E. Anita, W.Y.H. Baillie, E.D. Dunlop, Solar cell efficiency tables (version 50). Prog. Photovolt. (2017).  https://doi.org/10.1002/pip.2909 Google Scholar
  4. 4.
    B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Solar cells utilizing small molecular weight organic semiconductors. Prog. Photovolt Res. Appl. 15, 659–676 (2015).  https://doi.org/10.1002/pip CrossRefGoogle Scholar
  5. 5.
    P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi. 9, 28–31 (2015).  https://doi.org/10.1002/pssr.201409520 Google Scholar
  6. 6.
    X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovolt. (2016).  https://doi.org/10.1002/pip Google Scholar
  7. 7.
    W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, M. Matsumura, Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure. Electrochim. Acta. 88, 436–442 (2013).  https://doi.org/10.1016/j.electacta.2012.10.076 CrossRefGoogle Scholar
  8. 8.
    S. Bourdais, C. Chon, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, A. Lafond, F. Donatini, G. Rey, S. Siebentritt, A. Walsh, G. Dennler, Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells. Adv. Energy Mater. 6, 1–21 (2016).  https://doi.org/10.1002/aenm.201502276 CrossRefGoogle Scholar
  9. 9.
    J.O. Jeon, K.D. Lee, L.S. Oh, S.W. Seo, D.K. Lee, H. Kim, J.H. Jeong, M.J. Ko, B. Kim, H.J. Son, J.Y. Kim, Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition, ChemSusChem (2014)  https://doi.org/10.1002/cssc.201301347. 1073–1077
  10. 10.
    S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 8–10 (2010).  https://doi.org/10.1063/1.3275796 Google Scholar
  11. 11.
    S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013).  https://doi.org/10.1002/adma.201203146 CrossRefGoogle Scholar
  12. 12.
    A. Redinger, K. Hönes, X. Fontań, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Ṕrez-Rodríguez, S. Siebentritt, Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films. Appl. Phys. Lett. 98, 1–3 (2011).  https://doi.org/10.1063/1.3558706 CrossRefGoogle Scholar
  13. 13.
    Q. Guo, G.M. Ford, W. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc., 132 17384–17386 (2010)CrossRefGoogle Scholar
  14. 14.
    K.V. Gurav, S.W. Shin, U.M. Patil, M.P. Suryawanshi, S.M. Pawar, M.G. Gang, S.A. Vanalakar, J.H. Yun, J.H. Kim, Improvement in the properties of CZTSSe thin films by selenizing single-step electrodeposited CZTS thin films. J. Alloys Compd. 631, 178–182 (2015).  https://doi.org/10.1016/j.jallcom.2014.12.253 CrossRefGoogle Scholar
  15. 15.
    F.-I. Lai, J.-F. Yang, Y.-L. Wei, S.-Y. Kuo, High quality sustainable Cu2ZnSnSe4(CZTSe) absorber layers in highly efficient CZTSe solar cells. Green Chem. (2017).  https://doi.org/10.1039/C6GC02300B Google Scholar
  16. 16.
    C. Dun, W. Huang, H. Huang, J. Xu, N. Zhou, Y. Zheng, H. Tsai, W. Nie, D.R. Onken, Y. Li, D.L. Carroll, Hydrazine-free surface modification of CZTSe nanocrystals with all-inorganic ligand. J. Phys. Chem. C. 118, 30302–30308 (2014).  https://doi.org/10.1021/jp510558b CrossRefGoogle Scholar
  17. 17.
    A. Mohan, S. Rajesh, Impact of annealing on the investigation of In3Se2/Cu2Se/In3Se2 sandwich structure prepared by thermal evaporation technique for solar cell applications. Superlattices Microstruct. 85, 638–645 (2015).  https://doi.org/10.1016/j.spmi.2015.05.018 CrossRefGoogle Scholar
  18. 18.
    M. Dimitrievska, A. Fairbrother, E. Saucedo, A. Pérez-Rodríguez, V. Izquierdo-Roca, Secondary phase and Cu substitutional defect dynamics in kesterite solar cells: impact on optoelectronic properties. Sol. Energy Mater. Sol. Cells 149, 304–309 (2016).  https://doi.org/10.1016/j.solmat.2016.01.029 CrossRefGoogle Scholar
  19. 19.
    A. Mohan, S. Rajesh, M. Gopalakrishnan, Preparation of multiband structure with Cu2Se/Ga3Se2/In3Se2 thin films by thermal evaporation technique for maximal solar spectrum utilization. Superlattices Microstruct. 98, 46–53 (2016).  https://doi.org/10.1016/j.spmi.2016.08.006 CrossRefGoogle Scholar
  20. 20.
    S. Venkatachalam, Y.L. Jeyachandran, P. Sureshkumar, A. Dhayalraj, D. Mangalaraj, S.K. Narayandass, S. Velumani, Characterization of vacuum-evaporated ZnSe thin films. Mater. Charact. 58, 794–799 (2007).  https://doi.org/10.1016/j.matchar.2006.11.017 CrossRefGoogle Scholar
  21. 21.
    J. Xu, Q. Yang, W. Kang, X. Huang, C. Wu, L. Wang, L. Luo, W. Zhang, C.S. Lee, Water evaporation induced conversion of CuSe Nanoflakes to Cu2–xSe hierarchical columnar superstructures for high-performance solar cell applications. Part. Part. Syst. Charact. 32, 840–847 (2015).  https://doi.org/10.1002/ppsc.201400253 CrossRefGoogle Scholar
  22. 22.
    J. Kim, H.S. Lee, N.M. Park, Post-annealing effect on the reactively sputter-grown CIGS thin films and its influence to solar cell performance. Curr. Appl. Phys. 14, S63–S68 (2014).  https://doi.org/10.1016/j.cap.2013.11.040 CrossRefGoogle Scholar
  23. 23.
    J.F. Guillemoles, A. Lusson, P. Cowache, S. Massaccesi, J. Vedel, D. Lincot, Recrystallization of electrodeposited copper indium diselenide thin films in an atmosphere of elemental selenium. Adv. Mater. 6, 376–379 (1994).  https://doi.org/10.1002/adma.19940060507 CrossRefGoogle Scholar
  24. 24.
    B. Stegemann, J. Kegel, M. Mews, E. Conrad, Passivation of textured silicon wafers: Influence of pyramid size distribution, a-Si:H deposition temperature, and post-treatment. Energy Proced. 38, 881–889 (2013).  https://doi.org/10.1016/j.egypro.2013.07.360 CrossRefGoogle Scholar
  25. 25.
    O.M. Express, P. Sciences, A. Laboratories, E. Assessment, L. Based, M. View, Effect of laser-induced conversion of silicon nitride to silicon oxy-nitride on antireflective properties of passivation. Opt. Mater. Express (2016).  https://doi.org/10.1364/OME.5.001532 Google Scholar
  26. 26.
    A. Mohan, S. Rajesh, Temperature induced CuInSe2 nanocrystal formation in the Cu2Se-In3Se2 multilayer thin films. Superlattices Microstruct. 104 186–204 (2017).  https://doi.org/10.1016/j.spmi.2017.02.009 CrossRefGoogle Scholar
  27. 27.
    L.-N. Qiao, H.-C. Wang, Y. Shen, Y.-H. Lin, C.-W. Nan, Enhanced photocatalytic performance under visible and near-infrared irradiation of Cu1.8Se/Cu3Se2 composite via a phase junction. Nanomaterials 7, 19 (2017).  https://doi.org/10.3390/nano7010019 CrossRefGoogle Scholar
  28. 28.
    Y.G. Gudage, N.G. Deshpande, A.A. Sagade, R. Sharma, Room temperature electrosynthesis of ZnSe thin films. J. Alloys Compd. 488, 157–162 (2009).  https://doi.org/10.1016/j.jallcom.2008.11.036 CrossRefGoogle Scholar
  29. 29.
    X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, Solar cells utilizing small molecular weight organic semiconductors. Prog. Photovolt Res. Appl. 24, 879–898 (2016).  https://doi.org/10.1002/pip CrossRefGoogle Scholar
  30. 30.
    R.B. Kale, C.D. Lokhande, Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reaction (SILAR) method. Mater. Res. Bull. 39, 1829–1839 (2004).  https://doi.org/10.1016/j.materresbull.2004.06.014 CrossRefGoogle Scholar
  31. 31.
    C.X. Shan, Z. Liu, X.T. Zhang, C.C. Wong, S.K. Hark, Wurtzite ZnSe nanowires: growth, photoluminescence, and single-wire Raman properties. Nanotechnology. 17, 5561–5564 (2006).  https://doi.org/10.1088/0957-4484/17/22/006 CrossRefGoogle Scholar
  32. 32.
    M.M.D. Kumar, S. Devadason, Evidence for quantum confinement effects in CdSe/ZnSe multilayer thin films prepared by the physical vapor deposition method. Acta Mater. 61, 4135–4141 (2013).  https://doi.org/10.1016/j.actamat.2013.03.040 CrossRefGoogle Scholar
  33. 33.
    X. Fan, D.J. Singh, W. Zheng, Valence band splitting on multilayer MoS2: mixing of spin-orbit coupling and interlayer coupling. J. Phys. Chem. Lett. 7, 2175–2181 (2016).  https://doi.org/10.1021/acs.jpclett.6b00693 CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, H. Li, H. Wang, R. Liu, S. Zhang, Z. Qiu, I. Science, F. Materials, I. Technology, C. Academy, C. Road, S. Electronics, U. Se, On valence-band splitting in layered MoS on valence-band splitting in layered MoS 2. ACS Nano 9, 8514–8519 (2015).  https://doi.org/10.1021/acsnano.5b03505 CrossRefGoogle Scholar
  35. 35.
    A. Kathalingam, T. Mahalingam, C. Sanjeeviraja, Optical and structural study of electrodeposited zinc selenide thin films. Mater. Chem. Phys. 106, 215–221 (2007).  https://doi.org/10.1016/j.matchemphys.2007.05.051 CrossRefGoogle Scholar
  36. 36.
    C. Raju, M. Falmbigl, P. Rogl, X. Yan, E. Bauer, J. Horky, M. Zehetbauer, R.C. Mallik, Thermoelectric properties of chalcogenide based Cu2–xZnSn1–xSe4. AIP Adv. (2013).  https://doi.org/10.1063/1.4794733 Google Scholar
  37. 37.
    W. Zhou, R. Liu, D. Tang, X. Wang, H. Fan, A. Pan, Q. Zhang, Q. Wan, B. Zou, Luminescence and local photonic confinement of single ZnSe:Mn nanostructure and the shape dependent lasing behavior. Nanotechnology 24, 55201 (2013).  https://doi.org/10.1088/0957-4484/24/5/055201 CrossRefGoogle Scholar
  38. 38.
    M. Azizar Rahman, M.K.R. Khan, Effect of annealing temperature on structural, electrical and optical properties of spray pyrolytic nanocrystalline CdO thin films. Mater. Sci. Semicond. Process. 24, 26–33 (2014).  https://doi.org/10.1016/j.mssp.2014.03.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Issac Nelson
    • 1
  • R. Rathes Kannan
    • 1
  • A. Mohan
    • 3
  • S. Rajesh
    • 2
  • B. Vidhya
    • 2
  1. 1.Thin film Laboratory, Department of SciencesKarunya UniversityCoimbatoreIndia
  2. 2.Department of Nanoscience and TechnologyKarunya UniversityCoimbatoreIndia
  3. 3.Department of PhysicsSt. Joseph’s College (Autonomous)BangaloreIndia

Personalised recommendations