Advertisement

Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn–0.3Ag–0.7Cu low-Ag solder

  • Jie Wu
  • Songbai Xue
  • Jingwen Wang
  • Mingfang Wu
  • Jianhao Wang
Article
  • 145 Downloads

Abstract

In order to enhance the properties of Sn–0.3Ag–0.7Cu low-Ag solder, α-Al2O3 nanoparticles with various content (0–0.5 wt%) were successfully doped into the solder paste with a self-designed dispersion step. After comprehensive study of the microstructures and properties of the novel nano-composite solder, several satisfactory modified results can be obtained. For instance, the wettability of solder was greatly improved with trace amount of α-Al2O3 nanoparticles-doped. The superior wettability was achieved by Sn–0.3Ag–0.7Cu–0.12Al2O3 solder with spreading area approaching to ~ 79 mm2. Detailed thermodynamic and kinetic analysis of how α-Al2O3 nanoparticles promoting the processes of solder wetting and spreading on Cu substrate were given. In addition, the joint soldered with Sn–0.3Ag–0.7Cu–0.12Al2O3 displayed the highest shear force (57.1 N) with a typical ductile fracture failure mode. This relates to the evidently refined microstructure as well as the well-controlled growth of interfacial Cu6Sn5 IMCs. Corresponding theoretical analysis shows 0.12 wt% Al2O3 nanoparticles-doped can decrease the growth rate constant of interfacial Cu6Sn5 IMCs from 5.08 × 10−10 to 1.71 × 10−10 cm2/s.

Notes

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51675269) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    V. Eveloy, S. Ganesan, Y. Fukuda, J. Wu, M.G. Pecht, 2005 6th International Conference on Electronic Packaging Technology (2005), pp. 27–44.  https://doi.org/10.1109/ICEPT.2005.1564718
  2. 2.
    S. Cheng, C.M. Huang, M. Pecht, Microelectron. Reliab. 75, 77–95 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Wang, H.M. Wei, P. He, T.S. Lin, F.J. Lu, J. Electron. Mater. 44(10), 3872–3879 (2015)CrossRefGoogle Scholar
  4. 4.
    M.L. Huang, N. Zhao, S. Liu, Y.Q. He, Trans. Nonferrous Met. Soc. China 26(6), 1663–1669 (2016)CrossRefGoogle Scholar
  5. 5.
    H.W. Chiang, K. Chang, J.Y. Chen, J. Electron. Mater. 35(12), 2074–2080 (2016)CrossRefGoogle Scholar
  6. 6.
    F.X. Che, W.H. Zhu, S.W. Edith, X.W. Poh, X.R. Zhang, Zhang, J. Alloy. Compd. 507(1), 215–224 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Yang, Y.H. Ko, J.H. Bang, T.S. Kim, C.W. Lee, M.Y. Li, Mater. Charact. 124, 250–259 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Zeng, S.B. Xue, L. Zhang, L.L. Gao, W. Dai, J.D. Luo, J. Mater. Sci. Mater. Electron. 21(5), 421–440 (2010)CrossRefGoogle Scholar
  9. 9.
    A.A. El-Daly, A.M. El-Taher, S. Gouda, Mater. Des. 65, 796–805 (2015)CrossRefGoogle Scholar
  10. 10.
    A.E. Hammad, Mater. Des. 52, 663–670 (2013)CrossRefGoogle Scholar
  11. 11.
    A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Mater. Sci. Eng. A 608, 130–138 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Wu, S.B. Xue, J.W. Wang, J.X. Wang, S. Liu, J. Mater. Sci. Mater. Electron. 28(14), 10230–10244 (2017)CrossRefGoogle Scholar
  13. 13.
    J.C. Xu, S.B. Xue, P. Xue, W.M. Long, Q.K. Zhang, J. Mater. Sci. Mater. Electron. 27(8), 8771–8777 (2016)CrossRefGoogle Scholar
  14. 14.
    W.X. Chen, S.B. Xue, H. Wang, Y.H. Hu, J.X. Wang, J. Mater. Sci. Mater. Electron. 21(7), 719–725 (2010)CrossRefGoogle Scholar
  15. 15.
    Q.K. Zhang, W.M. Long, X.Q. Yu, Y.Y. Pei, P.X. Qiao, J. Alloy. Compd. 622, 973–978 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.L. Huang, Z.Y. Xiu, G.H. Wu, Y.H. Tian, P. He, J. Mater. Sci. Mater. Electron. 27(7), 6809–6815 (2016)CrossRefGoogle Scholar
  17. 17.
    X.L. Qiu, H.M. Wei, Q. Wang, P. He, T.S. Lin, F.J. Lu, Mater. Sci. Technol. 23(1), 20–24 (2015)Google Scholar
  18. 18.
    X.C. Lv, T.S. Lin, J. Wang, A. Jing, P. He, Mater. Trans. 54(7), 1228–1231 (2013)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, K.N. Tu, Mater. Sci. Eng. R 82(1), 1–32 (2014)Google Scholar
  20. 20.
    T. Fouzder, Q.Q. Li, Y.C. Chan, D.K. Chan, J. Mater. Sci. Mater. Electron. 25(9), 4012–4023 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Zhang, X.Y. Fan, Y.H. Guo, C.W. He, Electron. Mater. Lett. 10(3), 645–647 (2014)CrossRefGoogle Scholar
  22. 22.
    X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562, 25–32 (2013)CrossRefGoogle Scholar
  23. 23.
    K.M. Kumar, V. Kripesh, A.A.O. Tay, J. Alloy. Compd. 450(1–2), 229–237 (2008)CrossRefGoogle Scholar
  24. 24.
    Z.B. Yang, W. Zhou, P. Wu, Mater. Sci. Eng. A 590, 295–300 (2014)CrossRefGoogle Scholar
  25. 25.
    A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51(12), 2306–2313 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, G. Saad, J. Mater. Sci. Mater. Electron. 24(9), 3210–3218 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Sun, L. Zhang, L. Xu, S.J. Zhong, J. Ma, B. Li, J. Mater. Sci. Mater. Electron. 27(7), 7665–7673 (2016)CrossRefGoogle Scholar
  28. 28.
    L. Yang, J.G. Ge, Y.C. Zhang, J. Dai, Y.F. Jing, J. Mater. Sci. Mater. Electron. 26(1), 613–619 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Gu, X.C. Zhao, Y. Li, Y. Liu, Y. Wang, Z.Y. Li, J. Alloy. Compd. 627, 39–47 (2015)CrossRefGoogle Scholar
  30. 30.
    W.Q. Xing, X.Y. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W.X. Wang, M. Ding, J. Alloy. Compd. 695, 574–582 (2017)CrossRefGoogle Scholar
  31. 31.
    L.C. Tsao, R.W. Wu, T.H. Cheng, K.H. Fan, R.S. Chen, Mater. Des. 50(17), 774–781 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Xiao, Y. Wan, J. Li, Chin. J. Nonferrous Met. 16(12), 2120–2125 (2016)Google Scholar
  33. 33.
    C.J. Lu, Z.Z. Zhang, J.Q. Zhou, S.M. Zhang, Mater. Rev. 21(8), 165–166 (2007)Google Scholar
  34. 34.
    R.N. Han, S.B. Xue, Y.H. Hu, Z.Y. Wang, J.Y. Ja, Trans. China Weld. Inst. 33(10), 101–104 (2012)Google Scholar
  35. 35.
    W.E. Rd, G.S. Grest, D.R. Heine, Phys. Rev. Lett. 91(23), 236102 (2003)CrossRefGoogle Scholar
  36. 36.
    Q.J. Zhai, S.K. Guan, Q.Y. Shang, Calphad-Computer Coupling of Phase Diagrams & Thermochemistry (Industry Press, Beijing, 1999), p. 142Google Scholar
  37. 37.
    A. Roshanghias, J. Vrestal, A. Yakymovych, K.W. Richter, H. Ipser, Calphad 49, 101–109 (2015)CrossRefGoogle Scholar
  38. 38.
    H.K. Kim, T.N. Tu, Phys. Rev. B 53(23), 16027–16034 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations