AC conductivity and dielectric relaxation properties of bulk TlInSe2 prepared from single crystal

  • A. A. Attia
  • M. A. M. Seyam
  • S. S. Nemr


The dependence of AC conductivity and dielectric properties on the frequency and temperature for TlInSe2 in pellet form obtained from TlInSe2 single crystal were studied in the frequency range of 42 Hz–5 MHz and temperature range of 294–393 K. The structure of TlInSe2 in powder form was examined using X-ray diffraction. TlInSe2 at room temperature was found to be tetragonal system with lattice parameters of a = 8.063 Å and c = 6.827 Å. The structural parameters, such as crystallite size D, micro strain ε, dislocation density δ, and unit cell parameters were determined from XRD spectra. The AC conductivity of the TlInSe2 was found to obey the power law, i.e. \({\sigma }_{ac}\left(\omega \right)= A{\omega }^{s}\). AC conductivity of TlInSe2 was dominated by the correlated barrier hopping (CBH) model. The obtained activation energy values of the AC conductivity have confirmed that the hopping conduction is the dominant one. Where, a decrease in these values has noticed with the increase in frequency. The density of localized states \(N\left({E}_{F}\right)\) close to Fermi level for TlInSe2 was obtained in the range of 1.02–2.8 × 1019 eV−1 cm−3 for various temperatures and frequency. The frequencies corresponding to maxima of the imaginary electric modulus at different temperatures were found to satisfy an Arrhenius law with activation energy E R of 0.32 eV. A decrease in the relaxation time τ was observed with the increase in temperature. The average hopping distance R and the average time of charge carrier hoping between localized states t were found in the range of 6.10–11.95 nm and 2 × 10−7–2.4 × 10−2 s respectively, for the investigated range of frequency and the value of the binding energy W m was 0.52 eV. The dielectric relaxation mechanism was also explained by the Cole–Cole types.



The authors would like to thank Prof. Dr. M.M. El-Nahass; Department of Physics, Ain Shams university, for supplying the sample material of this research and his fruitful discussion.


  1. 1.
    A.T. Nagat, S.E. Al Garni, F.S. Bahabri, G. Attia, S.R. AlHardi, A.A. Al Ghamdi, JKAU 21, 13 (2009)CrossRefGoogle Scholar
  2. 2.
    V. Grivickas, V. Bikbajevas, V. Gavriusinas, J. Linnros, Mater. Sci. 12, 279 (2006)Google Scholar
  3. 3.
    H.A. Elshaikh, Cryst. Res. Technol. 31, 903 (1996)CrossRefGoogle Scholar
  4. 4.
    K. Mimura, T. Nogami, K. Abe, K. Wakita, M. Arita, N. Mamedov, G. Orudzhev, H. Namatame, M. Taniguchi, Y. Tagchi, K. Ichikawa, Jpn. J. Appl. Phys. 47, 8188 (2008)CrossRefGoogle Scholar
  5. 5.
    A.G. Abdullaev, K.R. Allakhverdiev, T.D. Ibragimov, R.M. Sardarly, Phys. Status Solidi 128, 401 (2006)CrossRefGoogle Scholar
  6. 6.
    N. Mamedov, K. Wakita, S. Akita, Y. Nakayama, Jpn. J. Appl. Phys. 44, 709 (2005)CrossRefGoogle Scholar
  7. 7.
    N.M. Gasanly, H. Ozkan, M. Tas, Cryst. Res. Technol. 35, 185 (2000)CrossRefGoogle Scholar
  8. 8.
    A.F. Qasrawi, N.M. Gasanly, J. Phys. 21, 115801 (2009)Google Scholar
  9. 9.
    I.V. Alekseev, Instrumental and Experimental Techniques (Wiley, New York, 2008)Google Scholar
  10. 10.
    A.F. Qasrawi, F.G. Aljammal, N.M. Taleb, N.M. Gasanly, Phys. B 406, 2740 (2011)CrossRefGoogle Scholar
  11. 11.
    K.K.K. Mamedov, A.M. Abdullaev, E.M. Kekimova, Phys. Status Solidi 94, 115 (1986)CrossRefGoogle Scholar
  12. 12.
    I. Samaras, K. Kambas, C. Julien, Mater. Res. Bull. 25, 1 (1990)CrossRefGoogle Scholar
  13. 13.
    S.N. Mustafaeva, V.A. Ramazanzade, M.M. Asadov, Mater. Chem. Phys. 40, 142 (1995)CrossRefGoogle Scholar
  14. 14.
    N. Mamedov, K. Wakita, A. Ashida, T. Matsi, K. Morii, Thin Solid Films 499, 275 (2006)CrossRefGoogle Scholar
  15. 15.
    D. Muller, G. Eulenberger, H. Hahn, Z. Anorg. Allg. Chem. 398, 207 (1973)CrossRefGoogle Scholar
  16. 16.
    J. Banys, T.R. Wondre, G. Guseinov, Mater. Lett. 9, 269 (1990)CrossRefGoogle Scholar
  17. 17.
    A.A. Ebnalwaled, R.H. Al-Orainy, Appl Phys A 112, 955 (2013)CrossRefGoogle Scholar
  18. 18.
    A.U. Sheleg, V.G. Hurtavy, S.N. Mustafaeva, E.M. Kerimova, Phys. Solid State 53, 472 (2011)CrossRefGoogle Scholar
  19. 19.
    A. Shwani, K. Sharma, K.L. Bhatia, J. Non-Cryst. Solids 109, 95 (1989)CrossRefGoogle Scholar
  20. 20.
    M. Pollak, Philos. Magn. 23, 519 (1971)CrossRefGoogle Scholar
  21. 21.
    A. Ghosh, J. Phys. Rev. B 42, 5665 (1990)CrossRefGoogle Scholar
  22. 22.
    M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972)CrossRefGoogle Scholar
  23. 23.
    X. Le Cleac’h, J. Phys. 40, 417 (1979)CrossRefGoogle Scholar
  24. 24.
    S.R. Elliott, Philos. Magn. B 36, 1291 (1977)CrossRefGoogle Scholar
  25. 25.
    K. Shimakawa, Philos. Magn. B 46, 123 (1982)CrossRefGoogle Scholar
  26. 26.
    G.D. Guseinov, E. Mooser, E.M. Kerimova, R.S. Gamidov, I.V. Alekseev, M.Z. Ismailov, Phys. Status Solidi 34, 33 (1969)CrossRefGoogle Scholar
  27. 27.
    H.M. Abdelmoneim, Indian J. Pure Appl. Phys. 48, 562 (2010)Google Scholar
  28. 28.
    A. Dutta, C. Bharti, T.P. Sinha, Indian J. Eng. Mater. Sci. 15, 181 (2008)Google Scholar
  29. 29.
    J.P. Enriquez, N.R. Mathews, G.P. Hernands, X. Mathewo, Mater. Chem. Phys. 142, 432 (2013)CrossRefGoogle Scholar
  30. 30.
    V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Anwar, M. Pattanaik, B.K. Mishra, S. Anwar, Mater. Sci. Semicond. Process. 34, 45 (2015)CrossRefGoogle Scholar
  32. 32.
    E. Lifshim, X-ray Characterization of Materials (Wiley, New York 1999)CrossRefGoogle Scholar
  33. 33.
    E. Ouachtari, A. Kmili, S.B. Eldrissi, A. Bouaoud, H. Erguig, P. Elies, I. Mod. Phys. 2, 1073 (2001)CrossRefGoogle Scholar
  34. 34.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  35. 35.
    M.A. Ahmed, U. Seddik, N.G. Imam, World J. Condens. Matter Phys. 2, 66 (2012)CrossRefGoogle Scholar
  36. 36.
    M.A. Ahmed, N. Okasha, R.M. Kershi, J. Magn. Magn. Mater. 321, 3967 (2009)CrossRefGoogle Scholar
  37. 37.
    S.R. Elliott, Solid State Commun. 28, 939 (1978)CrossRefGoogle Scholar
  38. 38.
    F. Yakuphanoglu, I.S. Yahia, B.F. Senkal, G.B. Sakr, W.A. Farooq, Synth. Met. 161, 817 (2011)CrossRefGoogle Scholar
  39. 39.
    B.K. Chaudhuri, K. Chaudhuri, K.K. Som, J. Phys. Chem. Solids 50, 1147 (1989)Google Scholar
  40. 40.
    I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)CrossRefGoogle Scholar
  41. 41.
    S.N. Mustafeva, M.M. Asadov, K.S. Qahramanov, Semicond. Phys. Quant. Electron. Optoelectron. 10, 58 (2007)Google Scholar
  42. 42.
    N. Mustafeave, Phys. Solid State 46, 1008 (2004)CrossRefGoogle Scholar
  43. 43.
    M.M. El-Nahass, S.B. Youssef, H.A.M. Ali, A. Hassan, Eur. Phys. J. Appl. Phys. 55, 10101 (2011)CrossRefGoogle Scholar
  44. 44.
    S.J. Yaghmour, Eur. Phys. J. Appl. Phys. 49, 10402 (2010)CrossRefGoogle Scholar
  45. 45.
    B. Tareev, Physics of Dielectric Materials. (Mir Publishers, Moscow, 1975)Google Scholar
  46. 46.
    R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchiele, J.R. Ramos-Barrado, Thin Solid Films 426, 68 (2003)CrossRefGoogle Scholar
  47. 47.
    R.K. Dixon, Phys. Rev. B 42, 8179 (1990)CrossRefGoogle Scholar
  48. 48.
    H. Smaoui, L.F.L. Mir, H. Guermazi, S. Agnel, A. Toureille, J. Alloys Compd. 477, 316 (2009)CrossRefGoogle Scholar
  49. 49.
    A.A. Attia, H.S. Soliman, M.M. Saadeldin, K. Sawaby, Synth. Met. 205, 139 (2015)CrossRefGoogle Scholar
  50. 50.
    A.S. Riad, M.T. Korayem, T.G. Aabdel, Malik, Phys. B 270, 140 (1999)CrossRefGoogle Scholar
  51. 51.
    A. Goswami, A.P. Goswami, Thin Solid Films 16, 175 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations