The effects of quenching on electrical properties, and leakage behaviors of 0.67BiFeO3–0.33BaTiO3 solid solutions

  • Yanfeng Qin
  • Jie Yang
  • Pan Xiong
  • Wenjuan Huang
  • Jiyue Song
  • Lihua Yin
  • Peng Tong
  • Xuebin Zhu
  • Yuping Sun


Ferroelectric solid solutions of 0.67BiFeO3–0.33BaTiO3 were prepared by a Pechini method followed by quenching process. The XRD results indicate that both the furnace-cooled and water-quenched samples are consist of rhombohedral and tetragonal phases. SEM images show that the quenching process does not change the microstructure of 0.67BiFeO3–0.33BaTiO3 solid solutions. The quenched sample exhibits well-defined P–E hysteresis loop with remnant polarization of 23 µC/cm2 at room temperature. The leakage mechanism of the furnace-cooled sample is Ohmic conduction mechanism, whereas the leakage mechanism of water-quenched sample is predominated by field-assisted ionic conduction at room-temperature and 50 °C and then changes to three different conduction mechanisms at 100 °C.



This work was supported by the National Key Research and Development Program of China (2017YFA0403502) and Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH015).


  1. 1.
    J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073 (1970)CrossRefGoogle Scholar
  2. 2.
    I. Sosnowskat, T. Peterlin-Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys. 15, 4835–4846 (1982)CrossRefGoogle Scholar
  3. 3.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 14, 1719–1722 (2003)CrossRefGoogle Scholar
  4. 4.
    P. Fischer, M. PoIomska, I. Sosnowska, M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C: Solid State Phys. 13, 1931–1940 (1980)CrossRefGoogle Scholar
  5. 5.
    M. Valant, A.-K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater. 19, 5431–5436 (2007)CrossRefGoogle Scholar
  6. 6.
    S.M. Selbach, M.-A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)CrossRefGoogle Scholar
  7. 7.
    T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 108, 074107 (2010)CrossRefGoogle Scholar
  8. 8.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  9. 9.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855 (2000)CrossRefGoogle Scholar
  10. 10.
    T. Kanai, S. Ohkoshi, A. Nakajima, T. Watanabe, K. Hashimoto, A ferroelectric ferromagnetcomposed of (PLZT)(x)-(BiFeO3)(1–x) solid solution. Adv. Mater. 13, 487–490 (2001)CrossRefGoogle Scholar
  11. 11.
    W.J. Huang, J. Yang, Y.F. Qin, P. Xiong, D. Wang, L.H. Yin, X.W. Tang, W.H. Song, P. Tong, X.B. Zhu, Y.P. Sun, Room temperature multiferrocity and magnetodielectric properties of ternary (1–x) (0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (0 ≤ x ≤ 0.9) solid solutions. Appl. Phys. Lett. 111, 112902 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Wu, B. Shen, Q.R. Hu, J. Chen, Y.P. Wang, Y.D. Xia, J. Yin, Z.G. Liu, Giant electromechanical strain response in lead-free SrTiO3 doped (Bi0.5Na0.5TiO3-BaTiO3)-LiNbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 100, 4670–4679 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Liu, F. Li, P. Li, J.W. Zhai, B. Shen, B.H. Liu, Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. J. Eur. Ceram. Soc. 37, 4585–4595 (2017)CrossRefGoogle Scholar
  14. 14.
    S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957–2961 (2009)CrossRefGoogle Scholar
  15. 15.
    H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, W.H. Li, H. Wang, Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3-BaTiO3 high temperature ceramics. J. Eur. Ceram. Soc. 33, 1177–1183 (2013)CrossRefGoogle Scholar
  16. 16.
    Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc. 96, 3163–3168 (2013)Google Scholar
  17. 17.
    J. Chen, J.L. Wang, H.Y. Dai, T. li, Z.P. Chen, Investigations on the structure, defects, electrical and magnetic properties of Ni-substituted BiFeO3 ceramics. J. Mater. Sci.: Mater. Electron. 27, 11151–11157 (2016)Google Scholar
  18. 18.
    M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.-H. Kim, W.-J. Kim, D. Do, Il-K. Jeong, High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27, 6976–6982 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Kim, G.P. Khanal, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, Revealing the role of heat treatment in enhancement of electrical properties of lead-free piezoelectric ceramics. J. Appl. Phys. 122, 014103 (2017)CrossRefGoogle Scholar
  20. 20.
    D.S. Kim, C. Cheon, S.S. Lee, J.S. Kim, Effect of cooling rate on phase transitions and ferroelectric properties in 0.75BiFeO3-0.25BaTiO3 ceramics. Appl. Phys. Lett. 109, 202902 (2016)CrossRefGoogle Scholar
  21. 21.
    G.L. Yuan, S. Wing, Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1 – xNdxFeO3 (x = 0-0.15) ceramics. Appl. Phys. Lett. 88, 062905 (2006)CrossRefGoogle Scholar
  22. 22.
    X. Liu, B.H. Liu, F. Li, P. Li, J.W. Zhai, B. Shen, Relaxor phase evolution and temperature-insensitive large strain in B-site complex ions modified NBT-based lead-free ceramics. J. Mater. Sci. 53, 309–322 (2018)CrossRefGoogle Scholar
  23. 23.
    L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)CrossRefGoogle Scholar
  24. 24.
    U. Robels, G. Arlt, Domain wall clamping in ferroelectrics by orientation of defects. J. Appl. Phys. 73, 3454 (1993)CrossRefGoogle Scholar
  25. 25.
    M. Hagiwara, S. Fujihara, Effects of CuO addition on electrical properties of 0.6BiFeO3-0.4(Bi0.5K0.5)TiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 98, 469–475 (2015)CrossRefGoogle Scholar
  26. 26.
    P.J. Harrop, Dielectrics. (Butterworths, London, 1972)Google Scholar
  27. 27.
    X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  28. 28.
    S.J. Chu a, M. Zhang, H.L. Deng, Z.H. Wang, Y. Wang, Y.H. Pan, H. Yan, Investigation of doping effect on electrical leakage behavior of BiFeO3 ceramics. J. Alloy. Compd. 689, 475–480 (2016)CrossRefGoogle Scholar
  29. 29.
    A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFeO3. Ceram Int. 38, 3829–3834 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Wei, Y. Liu, X.F. Bai, C. Li, Y.L. Liu, Z. Xu, P. Gemeiner, R. Haumont, I.C. Infante, B. Dkhil, Crystal structure, leakage conduction mechanism evolution and enhanced multiferroic properties in Y-doped BiFeO3 ceramics. Ceram Int. 42, 13395–13403 (2016)CrossRefGoogle Scholar
  31. 31.
    C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume, T. Horiuchi, S. Sakai, Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J. Appl. Phys. 99, 054104 (2006)CrossRefGoogle Scholar
  32. 32.
    N. Dhifallah, B. Hehlen, M. Dammak, H. Khemakhem, Phase formation and dielectric study of Bi doped (Ba0.8Sr0.2)Ti0.95(Zn1/ 3Nb2/3)0.05O3 ceramic. Mater. Chem. Phys. 181, 176–186 (2016)CrossRefGoogle Scholar
  33. 33.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci.: Mater. Electron. 28, 6673–6684 (2017)Google Scholar
  34. 34.
    T. Zheng, Y. Ding, J.G. Wu, Bi nonstoichiometry and composition engineering in (1-x)Bi1 + yFeO3 + 3y/2-xBaTiO3 ceramics. RSC Adv. 6, 90831 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanfeng Qin
    • 1
    • 2
  • Jie Yang
    • 1
  • Pan Xiong
    • 1
    • 2
  • Wenjuan Huang
    • 1
    • 2
  • Jiyue Song
    • 1
    • 2
  • Lihua Yin
    • 1
  • Peng Tong
    • 1
  • Xuebin Zhu
    • 1
  • Yuping Sun
    • 1
    • 3
    • 4
  1. 1.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.University of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.High Magnetic Field LaboratoryChinese Academy of SciencesHefeiPeople’s Republic of China
  4. 4.Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations