Skip to main content
Log in

Enhanced single-phased multiferroic properties of Ca-doped filled tetragonal tungsten bronze Ba4Sm2Fe2Nb8O30 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effects of Ca-doped on single-phased multiferroic properties of polycrystalline Ba4 − 2xCa2xSm2Fe2Nb8O30 (x = 0, 0.2, 0.4, 0.6) ceramics were fabricated via a conventional solid-state reaction method. All of the Ba4 − 2xCa2xSm2Fe2Nb8O30 (BCSFN) ceramics were filled tetragonal tungsten bronze crystal structures which produced dense microstructures. Comparing with Ba4Sm2Fe2Nb8O30 (x = 0), the dielectric constant of BCSFN ceramics was increased remarkably especially in the sample of x = 0.4 that the dielectric constant was above 103 above 100 °C. Meanwhile, due to grain boundary barriers were reduced and leakage current increased in the BCSFN ceramic, dielectric loss increased with increasing of Ca2+ content. For ferroelectric property, the maximum remanent polarization (Pr) of 6.67 µC/cm2 was observed for the x = 0.4. Moreover, in polarization–electric field (P–E) loops, the maximum average breakdown strength (Eb) was 199.60 kV/cm. Meanwhile, for magnetic property, the remnant polarization and maximum moments were 0.85 emu/g and 1.78 emu/g for x = 0.4. Therefore, Ca2+ modification could impact both ferroelectric and magnetic properties in the BSFN ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.I. Khomskii, I.I.P. Institut, U. Köln, Z. Str, J. Magn. Magn. Mater. 306, 1–8 (2006)

    Article  CAS  Google Scholar 

  2. Y. Bu, Q. Zhong, D. Xu, W. Tan, J. Alloys Compd. 578, 60–66 (2013)

    Article  CAS  Google Scholar 

  3. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003)

    Article  CAS  Google Scholar 

  4. R. Nechache, C. Harnagea, L. Carignan, O. Gautreau, L. Pintilie, R. Nechache, C. Harnagea, L. Carignan, O. Gautreau, Science 309, 391–392 (2005)

    Article  Google Scholar 

  5. N.A. Hill, C. Daul, J. Phys. Chem. B 106, 3383–3388 (2002)

    Article  CAS  Google Scholar 

  6. M. Fiebig, J. Phys. D 38, R123–R152 (2008)

    Article  Google Scholar 

  7. M. Josse, O. Bidault, F. Roulland, E. Castel, A. Simon, D. Michau, Solid State Sci. 1, 1118–1123 (2008)

    Google Scholar 

  8. A. Gabelotaud, J. Aubree, B. Joukoff, Phys. Rev. B 25, 1766–1785 (1982)

    Article  Google Scholar 

  9. C. Filipic, Z. Kutnjak, R. Lortz, M. Dawber, J.F. Scott, J. Phys.Condens. Matter 19, 206–236 (2007)

    Article  Google Scholar 

  10. P.P. Liu, S.Y. Wu, X.L. Zhu, X.M. Chen, X.Q. Liu, J. Mater. Sci. Mater. Electron. 22, 866–871 (2011)

    Article  CAS  Google Scholar 

  11. P.P. Liu, X.L. Zhu, X.M. Chen, J. Appl. Phys. 106, 759 (2009)

    Google Scholar 

  12. L.W. Martin, Y. Chu, R. Ramesh, Mater. Sci. Eng. R 68, 89–133 (2010)

    Article  Google Scholar 

  13. I. Levin, M.C. Stennett, G.C. Miles, D.I. Woodward, A.R. West, I.M. Reaney, Appl. Phys. Lett. 89, 2006–2008 (2006)

    Google Scholar 

  14. L. Fang, H. Zhang, B. Wu, Prog, Cryst. Growth Charact. Mater. 40, 161–165 (2000)

    Article  CAS  Google Scholar 

  15. M. Savinov, J. Eur. Ceram. Soc. 19, 1071–1075 (1999)

    Article  Google Scholar 

  16. N. Wakiya, J. Wang, A. Saiki, K. Shinozaki, N. Mizutani, J. Eur. Ceram. Soc. 19, 1071–1075 (1999)

    Article  CAS  Google Scholar 

  17. U.C. Corporation, S. Yoshikawa, M. Greene, K.E. Weimer, H. Grad, D.C. Stevens, D. Callen, R.A. Dory, L.E. Zakharov, V.D. Shafranov, V.D. Shafranov, S. Yoshikawa, P. Plasma, K.L. Ngai, T.L. Reinecke, Phys. Rev. Lett. 38, 74–77 (1977)

    Article  Google Scholar 

  18. S.E. Sequence, P. Ba, Z. Strain, J. Am. Ceram. Soc. 560, 2–7 (2013)

    Google Scholar 

  19. K. Lin, Z. Zhou, L. Liu, H. Ma, J. Chen, J. Deng, L. You, H. Kasai, K. Kato, M. Takata, X. Xing, J. Am. Ceram. Soc. 137, 1–15 (2015)

    Google Scholar 

  20. Y. Bai, X.L. Zhu, X.M. Chen, J. Am. Ceram. Soc. 93, 3573–3576 (2010)

    Article  CAS  Google Scholar 

  21. E.L. Venturini, E.G. Spencer, P.V. Lenzo, A.A. Ballman, J. Appl. Phys. 343, 1–3 (1968)

    Google Scholar 

  22. C. Growth, D. November, F. Porcher, D. Michau, Cryst. Growth Des. 14, 5428–5435 (2014)

    Article  Google Scholar 

  23. L. Fan, H. Wu, F. Wang, Dalton Trans. 43, 7037–7043 (2014)

    Article  Google Scholar 

  24. A. Rotaru, A.J. Miller, D.C. Arnold, F.D. Morrison, Trans. R. Soc. London, Ser. A 372, 21–24 (2009)

    Google Scholar 

  25. R. Bodeux, D. Michau, M. Maglione, R. Bodeux, D. Michau, M. Maglione, Solid State Sci. 38, 112–118 (2014)

    Article  CAS  Google Scholar 

  26. A. Nicolaidis, K. Kosmidis, P. Argyrakis, Bordeaux 12, 217–229 (2009)

    Google Scholar 

  27. G. Anjum, S. Mollah, D.K. Shukla, R. Kumar, Mater. Lett. 64, 2003–2005 (2010)

    Article  CAS  Google Scholar 

  28. S. Chu, M. Zhang, H. Deng, Z. Wang, Y. Wang, J. Alloys Compd. 689, 475–480 (2016)

    Article  CAS  Google Scholar 

  29. B. Yang, L. Wei, X. Chao, Z. Wang, Z. Yang, J. Alloys Compd. 632, 368–375 (2015)

    Article  CAS  Google Scholar 

  30. G. Zerihun, G. Gong, S. Huang, S. Yuan, Ceram. Int. 41, 12426–12431 (2015)

    Article  CAS  Google Scholar 

  31. B. Na, H. Wu, Y. Pu, Z. Wang, K. Chen, Mater. Lett. 76, 222–225 (2012)

    Article  Google Scholar 

  32. H. Yan, F. Inam, G. Viola, H. Ning, Adv. Dielectr. 01, 107–118 (2011)

    Article  CAS  Google Scholar 

  33. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  34. M. Eichelbaum, R. Stösser, A. Karpov, C.K. Dobner, F. Rosowski, A. Trunschke, Phys. Chem. Chem. Phys. 14, 1302–1312 (2012)

    Article  CAS  Google Scholar 

  35. G. Viola, O. Raymond, R. Font, N. SuárezAlmodovar, J. Appl. Phys. 97, 084101–084108 (2005)

    Article  Google Scholar 

  36. S.F. Liu, Y.J. Wu, J. Li, Ceram. Int. 40, 9723–9729 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by National Natural Science Foundation of China (51572160), the Natural Science Foundation of Shaanxi Province (2016JQ5083) and Graduate Innovation Fund of Shaanxi University of Science and Technology (2016T90881).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xiao, Y.J., Wang, T. et al. Enhanced single-phased multiferroic properties of Ca-doped filled tetragonal tungsten bronze Ba4Sm2Fe2Nb8O30 ceramics. J Mater Sci: Mater Electron 29, 7294–7301 (2018). https://doi.org/10.1007/s10854-018-8718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8718-8

Navigation