Advertisement

Room-temperature electrocaloric effect in (1−x)Ba0.67Sr0.33TiO3xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics under moderate electric field

  • Zunping Xu
  • Hua Qiang
  • Yi Chen
  • Gang Liu
Article
  • 141 Downloads

Abstract

The electrocaloric effect (ECE) was investigated in (1−x)Ba0.67Sr0.33TiO3xBa0.9Ca0.1Ti0.9Zr0.1O3 (BST–xBCTZ, x = 0, 0.05, 0.1 and 0.2) ceramics synthesized using citrate–nitrate combustion derived powders. The dielectric spectroscopy revealed that the phase transition temperature increases with increasing x. The ECE was calculated using the Maxwell relation based on the PE hystersis loops. The addition of BCTZ has notable effect on the microstructure and ECE of ceramic samples. The most promising electrocaloric temperature change (△T) of 0.74 K and electrocaloric responsivity (△T/△E) of 0.247 × 10−6 K m V−1 were obtained in BST–0.05BCTZ ceramic under a moderate electric field of 30 kV/cm near cubic-to-tetragonal phase transition temperature.

Notes

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (XDJK2015C066).

References

  1. 1.
    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559–2595 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu et al., Energy Environ. Sci. 10, 528–537 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Qiang, Z. Xu, J. Mater. Sci. 27, 9976–9980 (2016)Google Scholar
  4. 4.
    B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 138, 15459–15464 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Xu, H. Qiang, Z. Chen, Y. Chen, J. Mater. Sci. 26, 578–582 (2015)Google Scholar
  6. 6.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270–1271 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Bai, G.P. Zheng, S.Q. Shi, J. Appl. Phys. 108, 104102 (2010)CrossRefGoogle Scholar
  8. 8.
    Z. Xu, H. Qiang, Mater. Lett. 191, 57–60 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Bai, X. Han, L. Qiao, Appl. Phys. Lett. 102, 252904 (2013)CrossRefGoogle Scholar
  10. 10.
    B. Asbani, J.L. Dellis, A. Lahmar, M. Courty, M. Amjoud, Y. Gagou, K. Djellab, D. Mezzane, Z. Kutnjak, M. El Marssi, Appl. Phys. Lett. 106, 042902 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Hao, J. Zhai, Appl. Phys. Lett. 104, 022902 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Xu, Z. Fan, X. Liu, X. Tan, Appl. Phys. Lett. 110, 082901 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Bai, G.P. Zheng, K. Ding, L. Qiao, S.Q. Shi, D. Guo, J. Appl. Phys. 110, 094103 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Bai, X. Han, K. Ding, L.J. Qiao, Appl. Phys. Lett. 103, 162902 (2013)CrossRefGoogle Scholar
  15. 15.
    X.Q. Liu, T.T. Chen, M.S. Fu, Y.J. Wu, X.M. Chen, Ceram. Int. 40, 11269–11276 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Kaddoussi, A. Lahmar, Y. Gagou, B. Asbani, J.L. Dellis, G. Cordoyiannis, B. Allouche, H. Khemakhem, Z. Kutnjak, M. El Marssi, J. Alloys Compd. 667, 198–203 (2016)CrossRefGoogle Scholar
  17. 17.
    X.S. Qian, H.J. Ye, Y.T. Zhang, H. Gu, X. Li, C.A. Randall, Q.M. Zhang, Adv. Funct. Mater. 24, 1300–1305 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, Q. Lin, W. Liu, D. Wang, RSC Adv. 6, 14084–14089 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Singh, V.S. Tiwari, P.K. Gupta, J. Appl. Crystallogr. 46, 324–331 (2013)CrossRefGoogle Scholar
  20. 20.
    P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085 (2001)CrossRefGoogle Scholar
  21. 21.
    B.A. Tuttle, D.A. Payne, Ferroelectrics 37, 603–606 (1981)CrossRefGoogle Scholar
  22. 22.
    Z. Xu, H. Qiang, J. Sol-Gel. Sci. Technol. 77, 650–653 (2016)CrossRefGoogle Scholar
  23. 23.
    J.H. Qiu, Q. Jiang, J. Appl. Phys. 105, 034110 (2009)CrossRefGoogle Scholar
  24. 24.
    Z. Xu, H. Qiang, Y. Chen, C. Nie, Ceram. Int. 40, 4617–4621 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Qiang, Z. Xu, J. Mater. Sci. 26, 9063–9066 (2015)Google Scholar
  26. 26.
    B. Li, W.J. Ren, X.W. Wang, H. Meng, X.G. Liu, Z.J. Wang, Z.D. Zhang, Appl. Phys. Lett. 96, 102903 (2010)CrossRefGoogle Scholar
  27. 27.
    J.H. Yoo, W. Gao, K.H. Yoon, J. Mater. Sci. 34, 5361–5369 (1999)CrossRefGoogle Scholar
  28. 28.
    B. Asbani, Y. Gagou, M. Trcek, J.L. Dellis, M. Amjoud, A. Lahmar, D. Mezzane, Z. Kutnjak, M. El Marssi, J. Alloys Compd. 730, 501–508 (2018)CrossRefGoogle Scholar
  29. 29.
    G. Singh, V.S. Tiwari, P.K. Gupta, Appl. Phys. Lett. 103, 202903 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Sanlialp, V.V. Shvartsman, M. Acosta, B. Dkhil, D.C. Lupascu, Appl. Phys. Lett. 106, 062901 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Materials and EnergySouthwest UniversityChongqingChina
  2. 2.Chongqing College of Humanities, Science and TechnologyChongqingChina

Personalised recommendations