Skip to main content
Log in

Effect of co-doped Tb3+ ions on electroluminescence of ZnO:Eu3+ LED

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare earth (RE) -doped ZnO electroluminescence is worthy of investigation for phosphor-free white light-emitting diodes (LEDs) due to their pure and sharp emissions. Whereas, the low solubility of RE ions in ZnO films is found to hinder the performance of RE-doped ZnO devices. Herein, ZnO:Eu and ZnO:Eu/Tb LEDs were synthesized and the electroluminescence properties were tested. The results show that the emission intensity of ZnO: Eu/Tb LED is 8 times higher than that of ZnO: Eu LED while the input power is smaller when the concentration of terbium is proper. Furthermore, we discussed the excitation mechanism and found that the ratio of the EL intensity of the 5D1 → 7F1 to 5D0 → 7FJ (J=0 − 4) transition increases with increasing Tb doping concentration, which may indicate the possibility of energy transfer from Tb3+ to Eu3+. The results are believed to be an effective strategy to improve the electroluminescence of RE-doped semiconductor for white LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.C. Haomiao Zhu, W. Lin, Luo et al., Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun. 5, 4312–4322 (2014). https://doi.org/10.1038/ncomms5312

    Article  CAS  Google Scholar 

  2. Y. Zhang, J. Xu, Q. Cui et al., Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms. Sci. Rep. 7, 42464 (2017). https://doi.org/10.1038/srep42464

    Article  CAS  Google Scholar 

  3. Y. Suxia, J. Zhang, X. Zhang et al., Enhanced red emission in CaMoO4:Bi3+,Eu3+. J. Phys. Chem. C. 111, 13256–13260 (2007). https://doi.org/10.1021/jp073991c

    Article  CAS  Google Scholar 

  4. T.W. Chou, S. Mylswamy, R.S. Liu et al., Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes. Solid State Commun. 136, 205–209 (2005). https://doi.org/10.1016/j.ssc.2005.07.032

    Article  CAS  Google Scholar 

  5. W.J. Park, S.G. Yoon, D.H. Yoon, Photoluminescence properties of Y2O3 co-doped with Eu and Bi compounds as red-emitting phosphor for white. LED J. electroceram. 17, 41–44 (2006). https://doi.org/10.1007/s10832-006-9933-x

    Article  CAS  Google Scholar 

  6. S.-Y. Ying-Chien Fang, P.-C. Chu, Kao et al., Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+,Eu3+ red phosphors. J. Electrochem. Soc. 158, J1-J5 (2011). https://doi.org/10.1149/1.3518782

    Article  CAS  Google Scholar 

  7. V. Vinod Kumar, S. Kumar, M.M. Som, O.M. Duvenhage, H.C. Ntwaeaborwa, Swart, Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications. Appl. Surf. Sci. 308, 419–430 (2014). https://doi.org/10.1016/j.apsusc.2014.04.192

    Article  CAS  Google Scholar 

  8. B.S. Barros, P.S. Melo, R.H.G.A. Kiminami et al., Photophysical properties of Eu3+ and Tb3+-doped ZnAl2O4 phosphors obtained by combustion reaction. J. Mater. Sci. 41, 4744–4748 (2006). https://doi.org/10.1007/s10853-006-0035-6

    Article  CAS  Google Scholar 

  9. D. Chen, Y. Yu, P. Huang et al., Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode. Acta Mater. 58, 3035–3041 (2010). https://doi.org/10.1016/j.actamat.2010.01.035

  10. E.E.S. Teotonio, H.F. Brito, M. Cremona et al., Novel electroluminescent devices containing Eu3+-(2-acyl-1,3-indandionate) complexes with TPPO ligand. Opt. Mater. 32, 345–349 (2009). https://doi.org/10.1021/ic0485561

    Article  CAS  Google Scholar 

  11. J. Yu, L. Zhou, H. Zhang et al., Efficient electroluminescence from new lanthanide (Eu3+, Sm3+) Complexes. Inorg. Chem. 44, 1611–1618 (2005). https://doi.org/10.1021/ic0485561

  12. Y. Yang, C. Li, C. Wang et al., Rare-earth doped ZnO Films: a material platform to realize multicolor and near-infrared electroluminescence. Adv. Opt. Mater. 2, 240–244 (2014). https://doi.org/10.1002/adom.201300406

  13. S. Iwan, J.L. Zhao, S.T. Tan et al., Ion-dependent electroluminescence from trivalentrare-earth doped n-ZnO/p-Si heterostructured light-emitting diodes. Mat. Sci. Semicon. Proc. 30, 263–266 (2015). https://doi.org/10.1016/j.mssp.2014.09.048

  14. S.A.M. Lima, M.R. Davolos, C. Legnani et al., Low voltage electroluminescence of terbium- and thulium-doped zinc oxide films. J. Alloy. Compd. 418, 35–38 (2006). https://doi.org/10.1016/j.jallcom.2005.10.066

    Article  CAS  Google Scholar 

  15. J.-H. Lim, C.-K. Kang, K.-K. Kim et al., UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv. Mater. 18, 2720–2724 (2006). https://doi.org/10.1002/adma.200502633

  16. X.M. Zhang, M.Y. Lu, Y. Zhang et al., Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767 (2009). https://doi.org/10.1002/adma.200802686

  17. Y. Yunlong, Y. Wang, D. Chen et al., Enhanced emissions of Eu3+ by energy transfer from ZnO quantum dots embedded in SiO2 glass. Nanotechnology. 19, 055711–055715 (2008). https://doi.org/10.1088/0957-4484/19/05/055711

    Article  CAS  Google Scholar 

  18. G. D. Wang, M. Xing, et al., Defects-mediated energy transfer in red-light-emitting Eu-Doped ZnO nanowire arrays. J. Phys. Chem. C. 115, 22729–22735 (2011). https://doi.org/10.1021/jp204572v

    Article  CAS  Google Scholar 

  19. R.P. Luciana, R. Kassab, M. de Davinson, da Silva et al., Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures. J. Appl. Phys. 105, 103505 (2009). https://doi.org/10.1063/1.3126489

    Article  CAS  Google Scholar 

  20. J. Yuguang Lv, L. Zhang, Wang et al., J. Lumin. 128:117–122 (2007). https://doi.org/10.1016/j.jlumin.2007.05.013

    Article  CAS  Google Scholar 

  21. D.D. Wang, G.Z. Xing, J.H. Yang et al., Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers. J. Alloy. Compd. 504, 22–26 (2010). https://doi.org/10.1016/j.jallcom.2010.05.105

    Article  CAS  Google Scholar 

  22. T. A. Nishikawa, N. Furukawa et al., Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection. Appl. Phys. Express. 2, 071004 (2009). https://doi.org/10.1143/APEX.2.071004

    Article  CAS  Google Scholar 

  23. T. Ghosh, Effect of substrate-induced strain on the morphological, electrical, optical and and photoconductive properties of RF magnetron sputtered ZnO thin films. Mater. Res. Bull. 46:1039–1044 https://doi.org/10.1016/j.materresbull.2011.03.011

  24. P. Sundara, V. Purushothaman, S. Esakki et al., Role of point defects on the enhancement of room temperature ferromagnetism in ZnO nanorods. Cryst. Eng. Comm. 14, 4713–4718 (2012). https://doi.org/10.1039/c2ce25098e

    Article  CAS  Google Scholar 

  25. S. Yerci, R. Li, L. Dal Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes. Appl. Phys. Lett. 97, 081109 (2010). https://doi.org/10.1063/1.3483771

    Article  CAS  Google Scholar 

  26. J. Han, H. Paul Near-infrared-electroluminescent light-emitting planar optical sources based on gallium nitride doped with rare earths. Adv. Mater. 17, 91–96 (2005). https://doi.org/10.1002/adma.200400639

    Article  CAS  Google Scholar 

  27. Z.B. Fang, Y.S. Tan, H.X. Gong et al., Transparent conductive Tb-doped ZnO films prepared by rf reactive magnetron sputtering. Mater. Lett. 59, 2611–2614 (2005). https://doi.org/10.1016/j.matlet.2005.02.062

    Article  CAS  Google Scholar 

  28. F. He, J. Xu, et al., Composition dependence of dispersion and bandgap properties in PZN-xPT single crystals. J Appl. Phys. 110, 083513 (2011). https://doi.org/10.1063/1.3654142

    Article  CAS  Google Scholar 

  29. H. Junying Zhang, W. Feng, T. Hao, Wang, Luminescent properties of ZnO sol and film doped with Tb3+ ion. Mater. Sci. Eng. A. 425, 346–348 (2006). https://doi.org/10.1016/j.msea.2006.03.082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Laboratory of Luminescence and Optical Information of China in Beijing Jiaotong University with financial aid from the National Natural Science Foundation of China (Grant Nos. 60977017, 61275058), the Fundamental Research Funds for the Central Universities (2013JBM101), and Beijing Jiaotong University Foundation (S16PD00220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Wang, S., Wan, G. et al. Effect of co-doped Tb3+ ions on electroluminescence of ZnO:Eu3+ LED. J Mater Sci: Mater Electron 29, 7213–7219 (2018). https://doi.org/10.1007/s10854-018-8709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8709-9

Navigation