Luminescence properties and energy transfer of co-doped Ba3GdNa(PO4)3F:Ce3+,Tb3+ green-emitting phosphors

  • Zaifa Yang
  • Yuanxun Yu
  • Gongnian Zhang
  • Changjian Ji
  • Hongxia Bu
  • Denghui Xu
  • Jiayue Sun


Phase pure Ce3+ and Tb3+ singly doped and Ce3+/Tb3+ co-doped Ba3GdNa(PO4)3F samples have been synthesized via the high temperature solid-state reaction. The crystal structures, photoluminescence properties, fluorescence lifetimes, thermal properties and energy transfer of Ba3GdNa(PO4)3F:Ce3+,Tb3+ were systematically investigated. Rietveld structure refinement indicates that Ba3GdNa(PO4)3F crystallizes in a hexagonal crystal system with the space group P-6. For the co-doped Ba3GdNa(PO4)3F:Ce3+,Tb3+ samples, the emission color can be tuned from blue to green by varying the doping concentration of the Tb3+ ions. The intense green emission was realized in the Ba3GdNa(PO4)3F:Ce3+,Tb3+ phosphors on the basis of the highly efficient energy transfer from Ce3+ to Tb3+. Also the energy transfer mechanism has been confirmed to be quadrupole–quadrupole interaction, which can be validated via the agreement of critical distances obtained from the concentration quenching (13.84 Å). These results show that the developed phosphors may possess potential applications in near-ultraviolet pumped white light-emitting diodes.



This work was supported by National Natural Science Foundation of China (No. 21576002), National Natural Science Foundation of China (No. 11604170), Natural Science Foundation of Shandong Province, China (No. ZR2014AQ018), Scientific Research in Universities of Shandong Province (No. J16LJ06).


  1. 1.
    Z.G. Xia, D.M. Chen, J. Am. Ceram. Soc. 93, 1397 (2010)CrossRefGoogle Scholar
  2. 2.
    C. Yue, W.R. Wang, Q.Q. Wang, Y. Jin, Ceram. J. Alloy. Compd. 683, 575 (2016)CrossRefGoogle Scholar
  3. 3.
    Z.F. Yang, Y.M. Sun, Q.G. Xu, J.Y. Sun, J. Rare Earths 33, 1251 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.G. Xia, Z.H. Xu, M.Y. Chen, Q.L. Liu, Dalton Trans. 45, 11214 (2016)CrossRefGoogle Scholar
  5. 5.
    W.L. Guo, Y. Tian, P. Huang, L. Wang, Q.F. Shi, C.E. Cui, Ceram. Int. 42, 5427 (2016)CrossRefGoogle Scholar
  6. 6.
    Z.G. Xia, Q.L. Liu, Prog. Mater. Sci. 84, 59 (2016)CrossRefGoogle Scholar
  7. 7.
    C.H. Hsu, C.H. Lu, J. Mater. Chem. 21, 2932 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Jin, H.X. Ma, Y.F. Liu, Q.B. Liu, G.Y. Dong, Q.M. Yu, J. Alloy. Compd. 613, 275 (2014)CrossRefGoogle Scholar
  9. 9.
    Q.F. Guo, L.B. Liao, L.F. Mei, H.K. Liu, Y. Hai, J. Solid State Chem. 225, 149 (2015)CrossRefGoogle Scholar
  10. 10.
    Z.F. Yang, D.H. Xu, J.Y. Sun, J.N. Du, X.D. Gao, Mater. Sci. Eng. B 211, 13 (2016)CrossRefGoogle Scholar
  11. 11.
    I. Mayer, R. Roth, W. Brown, J. Solid State Chem. 11, 33 (1974)CrossRefGoogle Scholar
  12. 12.
    M. Xie, R. Pan, Opt. Mater. 35, 1162 (2013)CrossRefGoogle Scholar
  13. 13.
    C.X. Li, J. Dai, J. Huang, D.G. Deng, H. Yu, L. Wang, Y.T. Ma, Y.J. Hua, S.Q. Xu, Ceram. Int. 42, 6891 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Zeng, Y.M. Hu, Z.G. Xia, H.W. Huang, RSC Adv. 5, 68099 (2015)CrossRefGoogle Scholar
  15. 15.
    C. Zeng, H.K. Liu, Y.M. Hun, L.B. Liao, L.F. Mei, Opt. Laser Technol. 74, 6 (2015)CrossRefGoogle Scholar
  16. 16.
    Z.W. Zhang, C.L. Han, W.W. Shi, Y.Y. Kang, Y.S. Wang, W.G. Zhang, D.J. Wang, J. Mater. Sci. Mater. Electron. 26, 1923 (2015)CrossRefGoogle Scholar
  17. 17.
    B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)CrossRefGoogle Scholar
  18. 18.
    Y. Jin, Q.P. Wang, H.P. Zhou, L.L. Zhang, J.H. Zhang, Ceram. Int. 42, 3309 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Xu, Z.G. Xia, H.K. Liu, L.B. Liao, ECS J. Solid State Technol. 2, 186 (2013)CrossRefGoogle Scholar
  20. 20.
    W.W. Holloway Jr., M. Kestigian, J. Opt. Soc. Am. 59, 60 (1969)CrossRefGoogle Scholar
  21. 21.
    G. Blasse, Philips Res. Rep. 24, 131 (1969)Google Scholar
  22. 22.
    R. Chen, Y.H. Hu, Y.H. Jin, L. Chen, X.J. Wang, Appl. Phys. A 117, 823 (2014)CrossRefGoogle Scholar
  23. 23.
    L.G. Van Uitert, J. Electrochem. Soc. 114, 1048 (1967)CrossRefGoogle Scholar
  24. 24.
    Q.H. Zhang, H.Y. Ni, L.L. Wang, F.M. Xiao, Ceram. Int. 42, 6115 (2016)CrossRefGoogle Scholar
  25. 25.
    H.H. Lin, G.B. Zhang, P.A. Tanner, H.B. Liang, J. Phys. Chem. C 117, 12769 (2013)CrossRefGoogle Scholar
  26. 26.
    F.G. Meng, H.Z. Zhang, C.L. Chen, S.I. Kim, H.J. Seo, X.M. Zhang, J. Alloy. Compd. 671, 150 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Pang, C. Li, L. Shi, Q. Su, J. Phys. Chem. Solids 70, 303 (2009)CrossRefGoogle Scholar
  28. 28.
    G. Blasse, Phys. Lett. A 28, 444 (1968)CrossRefGoogle Scholar
  29. 29.
    D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063 (1954)CrossRefGoogle Scholar
  30. 30.
    Z.G. Xia, R.S. Liu, J. Phys. Chem. C 116, 15604 (2012)CrossRefGoogle Scholar
  31. 31.
    D.H. Xu, Z.F. Yang, J.Y. Sun, X.D. Gao, J.N. Du, J. Mater. Sci. Mater. Electron. 27, 8370 (2016)CrossRefGoogle Scholar
  32. 32.
    W.R. Liu, C.H. Huang, C.W. Yeh, J.C. Tsai, Y.C. Chiu, Y.T. Yeh, R.S. Liu, Inorg. Chem. 51, 9636 (2012)CrossRefGoogle Scholar
  33. 33.
    J.Y. Sun, D.P. Cui, J. Am. Ceram. Soc. 97, 843 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Bhushan, M.V. Chukichev, J. Mater. Sci. Lett. 9, 319 (1988)CrossRefGoogle Scholar
  35. 35.
    Y.S. Xu, X.H. Zhang, S.X. Dai, B. Fan, H.L. Ma, J.L. Adam, J. Ren, G.R. Chen, J. Phys. Chem. C 115, 13056 (2011)CrossRefGoogle Scholar
  36. 36.
    M. Zhao, Z.G. Xia, M.S. Molokeev, L. Ning, Q.L. Liu, Chem. Mater. 29, 6552 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringQilu Normal UniversityJinanPeople’s Republic of China
  2. 2.School of ScienceBeijing Technology and Business UniversityBeijingPeople’s Republic of China

Personalised recommendations