Ferroelectric fatigue mechanism under bipolar electrical loading in KNN lead free piezoelectric ceramic

  • Orapim Namsar
  • Chunmanus Uthaisar
  • Soodkhet Pojprapai


The effect of bipolar cyclic electrical loading on the ferroelectric and piezoelectric properties of KNN ceramics is investigated. The results showed that the bipolar fatigue leads to a decrease in domain switchability and piezoelectric responses of the ceramic. In the early period of cyclic loading, the fatigue mechanism is dominated by the domain wall pinning effect. When the number of fatigue cycles increases, the microstructural damage has a large impact on the fatigue process. From this, a qualitative model based on the relationship between domain pinning mechanism and internal stress is proposed.



This work is supported by SUT Research and Development Fund.


  1. 1.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 84, 432 (2004)Google Scholar
  2. 2.
    J. Rödel, W. Jo, K. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 89, 1153 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Zhang, R. Xia, T.R. Shrout, J. Electroceram. 19, 251 (2007)CrossRefGoogle Scholar
  4. 4.
    Y.P. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59, 241 (2005)CrossRefGoogle Scholar
  5. 5.
    D. Xiao, J. Wu, L. Wu, J. Zhu, P. Yu, D. Lin, Y. Liao, Y. Sun, J. Mater. Sci. 44, 5408 (2009)CrossRefGoogle Scholar
  6. 6.
    X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X.J. Wang, J. Am. Chem. Soc. 136, 2905 (2014)CrossRefGoogle Scholar
  7. 7.
    C. Uthaisar, P. Kantha, R. Yimnirun, S. Pojprapai, Integr. Ferroelectr. 149, 114 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Pan, C.F. Yue, O. Tosyali, J. Am. Ceram. Soc. 75, 1534 (1992)CrossRefGoogle Scholar
  9. 9.
    S. Pojprapai, J.L. Jones, A.J. Studer, J. Russell, N. Valanoor, M. Hoffman, Acta Mater. 56, 1577 (2008)CrossRefGoogle Scholar
  10. 10.
    V.V. Shvartsman, A.L. Kholkin, C. Verdier, D.C. Lupascu, J. Appl. Phys. 98, 094109 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Liu, K.J. Hsia, Appl. Phys. Lett. 83, 3978 (2003)CrossRefGoogle Scholar
  12. 12.
    M.A. Rafiq, M.E. Costa, A. Tkach, P.M. Vilarinho, Cryst. Growth Des. 15, 1289 (2015)CrossRefGoogle Scholar
  13. 13.
    F.A. Kroeger, Chemistry of Imperfect Crystals. (North-Holland, Amesterdam, 1964)Google Scholar
  14. 14.
    M.V. Raymond, D.M. Smyth, J. Phys. Chem. Solid 57, 1507 (1996)CrossRefGoogle Scholar
  15. 15.
    J.F. Scott, M. Dawber, Appl. Phys. Lett. 76, 3801 (2000)CrossRefGoogle Scholar
  16. 16.
    N. Balke, H. Kungl, T. Granzow, D.C. Lupascu, M.J. Hoffmann, J. Rödel, J. Am. Ceram. Soc. 90, 3869 (2007)Google Scholar
  17. 17.
    W.L. Warren, B.A. Tuttle, D. Dimos, Appl. Phys. Lett. 67, 1426 (1995)CrossRefGoogle Scholar
  18. 18.
    J. Nuffer, D.C. Lupascu, J. Rödel, Acta Mater. 48, 3783 (2000)CrossRefGoogle Scholar
  19. 19.
    Q.Y. Jiang, E.C. Subbarao, L.E. Cross, Acta Metall. Mater. 42, 3687 (1994)CrossRefGoogle Scholar
  20. 20.
    H. Weitzing, G.A. Schneider, J. Steffens, M. Hammer, M.J. Hoffmann, J. Eur. Ceram. Soc. 19, 1333 (1999)CrossRefGoogle Scholar
  21. 21.
    M. Ehmke, J. Glaum, W. Jo, T. Granzow, J. Rödel, J. Am. Ceram. Soc. 94, 2473 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Zeng, Y. Zhang, L. Zheng, G. Li, Q. Yin, J. Am. Ceram. Soc. 92, 752 (2009)CrossRefGoogle Scholar
  23. 23.
    K. Wang, J. Li, Adv. Funct. Mater. 20, 1924 (2010)CrossRefGoogle Scholar
  24. 24.
    J.L. Jones, E.B. Slamovich, K.J. Bowman, J. Appl. Phys. 97, 034113 (2005)CrossRefGoogle Scholar
  25. 25.
    C. Bedoya, C. Muller, J.L. Baudour, V. Madigou, M. Anne, M. Roubin, Mater. Sci. Eng. 75, 43 (2000)CrossRefGoogle Scholar
  26. 26.
    Y. Xiao, V.B. Shenoy, K. Bhattacharya, Phys. Rev. Lett. 95, 247603 (2005)CrossRefGoogle Scholar
  27. 27.
    M.J. Hoffmann, M. Hammer, A. Endriss, D.C. Lupascu, Acta Mater. 49, 1301 (2001)CrossRefGoogle Scholar
  28. 28.
    J.-T. Reszat, A. Glazounov, M.J. Hoffmann, J. Eur. Ceram. Soc. 21, 1349 (2001)CrossRefGoogle Scholar
  29. 29.
    K.S. Lee, Y.K. Kim, S. Baik, J. Kim, I.S. Jung, Appl. Phys. Lett. 79, 2444 (2001)CrossRefGoogle Scholar
  30. 30.
    A. Pramanick, D. Damjanovic, J.E. Daniels, J.C. Nino, J.L. Jones, J. Am. Ceram. Soc. 94, 2291 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Hammersley, S. Svensson, M. Hanfland, A. Fitch, D. Hausermann, High Press. Res. 14, 235 (1996)CrossRefGoogle Scholar
  32. 32.
    J.L. Jones, A. Pramanick, J.C. Nino, S. Maziar Motahari, E. Üstündag, M.R. Daymond, E.C. Oliver, Appl. Phys. Lett. 90, 172909 (2007)CrossRefGoogle Scholar
  33. 33.
    A. Pramanick, J.L. Jones, IEEE Trans. Ultrason. Ferroelectr. FrEq. Control. 56, 1546 (2009)CrossRefGoogle Scholar
  34. 34.
    I.K. Yoo, S.B. Desu, Mater. Sci. Eng. B I3, 319 (1992)CrossRefGoogle Scholar
  35. 35.
    L. He, D. Vanderbilt, Phys. Rev. B 68, 134103 (2003)CrossRefGoogle Scholar
  36. 36.
    J. Nuffer, D.C. Lupascu, A. Glazounov, H.-J. Kleebe, J. Rödel, J. Eur. Ceram. Soc. 22, 2133 (2002)CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, D.C. Lupascu, E. Aulbac, I. Baturin, A. Bell, J. Rödel Acta Mater. 53, 2203 (2005)CrossRefGoogle Scholar
  38. 38.
    S. Pojprapai, J.L. Jones, T. Vodenitcharova, J.V. Bernier, M. Hoffman, Scripta Mater. 64, 1 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Ceramic Engineering, Institute of EngineeringSuranaree University of TechnologyNakhon RatchasimaThailand

Personalised recommendations