Advertisement

Effect of bismuth–tin alloy particle diameter on bonding strength of copper nanoparticles/bismuth–tin solder hybrid joints

  • Toshikazu Satoh
  • Toshitaka Ishizaki
  • Masanori Usui
Article
  • 116 Downloads

Abstract

The effect of the diameter of Bi–Sn alloy particles on the bonding strength of hybrid joints formed between SiC chips and direct-bonded copper (DBC) plates using a Cu nanoparticles/Bi–Sn solder was studied. The bonding strength was the highest at 40 MPa for a Bi–Sn alloy particle diameter of 10 µm. Further, the bonding strength was dependent on the area of the bonding layer adhering to the SiC-side fracture surface, as determined by the die-shear test. Ni, which was deposited on the SiC chips and DBC plates before the bonding process, remained near the interfacial area of the bonding layer in the joints formed using the 5 µm particles. In contrast, Ni diffused all over the bonding area, with the exception of the interfacial area where Cu–Sn compounds were formed, in the joints produced using the larger alloy particles. The distribution of Sn in the bonding layer became more uniform and the segregation of Bi at the interface became more pronounced as the particle size was reduced. Further, with an increase in the particle size, the Ag layers deposited on the surfaces of the SiC chips and DBC plates diffused into the bonding layer after the first firing step at 473 K, which was performed before the secondary firing step at 623 K. These results imply that the diameter of the Bi–Sn solder particles in hybrid joints affects the interfacial structure, as it governs the wetting behavior of the Bi–Sn solder and hence has a determining effect on the bonding strength.

References

  1. 1.
    P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE. 90, 1065 (2002)CrossRefGoogle Scholar
  2. 2.
    G. Liu, B.R. Tuttle, S. Dhar, Appl. Phys. Rev. 2, 021307 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Kimoto, Jpn. J. Appl. Phys. 54, 040103 (2015)CrossRefGoogle Scholar
  4. 4.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans B 41, 824 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R. 49, 1 (2005)CrossRefGoogle Scholar
  6. 6.
    H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141 (2009)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, C. He, Y. Guo, J. Han, Y. Zhang, X. Wang, Microelectron. Reliab. 52, 559 (2012)CrossRefGoogle Scholar
  8. 8.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)CrossRefGoogle Scholar
  9. 9.
    K.S. Siow, J. Electron. Mater. 43, 947 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Ishizaki, R. Watanabe, J. Mater Chem. 22, 25198 (2012)CrossRefGoogle Scholar
  11. 11.
    T. Ishizaki, T. Satoh, A. Kuno, A. Tane, M. Yanase, F. Osawa, Y. Yamada, Microelectron. Reliab. 53, 1543 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Yamakawa, T. Takemoto, M. Shimoda., H. Nishikawa, K. Shiokawa, N. Terada, J. Electron. Mater. 42, 1260 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita, Int. J. Adhes Adhes. 33, 50 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Liu, H. Chen, H. Ji, M. Li, ACS Appl. Mater. Interfaces. 8, 33289 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, J. Mater. Process. Technol. 215, 299 (2015)CrossRefGoogle Scholar
  16. 16.
    Ph Buffat, J.P. Borel, Phys. Rev. A. 13, 2287 (1976)CrossRefGoogle Scholar
  17. 17.
    T. Ishizaki, K. Akedo, T. Satoh, R. Watanabe, J. Electron. Mater. 43, 774 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Satoh, T. Ishizaki, K. Akedo, J. Electron. Mater. 46, 1279 (2017)CrossRefGoogle Scholar
  19. 19.
    T. Satoh, T. Ishizaki, M. Usui, Mater. Des. 124, 203 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Tajima, T. Satoh, T. Ishizaki, M. Usui, J. Mater. Sci.: Mater. Electron. 28, 1764 (2017)Google Scholar
  21. 21.
    B. Predel, Phase equilibria, crystallographic and thermodynamic data of binary alloys B-Ba-C-Zr, in Landolt-Börnstein - Group IV Physical Chemistry, ed. by O. Madelung, vol 5B (Springer, Berlin, 1992). http://materials.springer.com/bp/docs/978-3-540-46733-5. Accessed 14 July 2015
  22. 22.
    P. Franke, D. Neuschütz, Binary systems. Part 3: Binary Systems from Cs-K to Mg-Zr Cu-Sn, in Landolt-Börnstein - Group IV Physical Chemistry, ed. by P. Franke, D. Neuschütz, vol 19B3 (Springer, Berlin, 2005). http://materials.springer.com/lb/docs/sm_lbs_978-3-540-31688-6_17. Accessed 14 July 2015
  23. 23.
    G.P. Vassilev, K.I. Lilova, J.-C. Gachonc, J. Alloy. Compd. 469, 264 (2009)CrossRefGoogle Scholar
  24. 24.
    W.H. Tao, C. Chen, C.E. Ho, W.T. Chen, C.R. Kao, Chem. Mater. 13, 1051 (2001)CrossRefGoogle Scholar
  25. 25.
    I. Karakaya, W.T. Thompson, J. Phase Equilibria. 14, 525 (1993)CrossRefGoogle Scholar
  26. 26.
    M.S. Lee, C. Chen, C.R. Kao, Chem. Mater. 11, 292 (1999)CrossRefGoogle Scholar
  27. 27.
    M.S. Lee, C.M. Liu, C.R. Kao, J. Electron. Mater. 28, 57 (1999)CrossRefGoogle Scholar
  28. 28.
    S.W. Chen, Y.W. Yen, J. Electron. Mater. 28, 1203 (1999)CrossRefGoogle Scholar
  29. 29.
    A. Hayashi, C.R. Cao, Y.A. Chang, Scr. Mater. 37, 393 (1997)CrossRefGoogle Scholar
  30. 30.
    A. Paul, C. Ghosh, W.J. Boettinger, Metall. Mater. Trans. A. 42A, 952 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Yuan, Y. Guan, D. Li, N. Moelans, J. Alloys Compd. 661, 282 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Bader, W. Gust, H. Hiever, Acta Metall. Mater. 43, 329 (1995)Google Scholar
  33. 33.
    S.-W. Yoon, M.D. Glover, K. Shiozaki, IEEE Trans. Power Electron. 28, 2448 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Shen, Y.C. Chan, S.Y. Liu, Acta Mater. 57, 5196 (2004)CrossRefGoogle Scholar
  35. 35.
    B. Predel, Phase equilibria, crystallographic and thermodynamic data of binary alloys Cr-Cs-Cu-Zr, in Landolt-Börnstein - Group IV Physical Chemistry, ed. by O. Madelung, vol 5D (Springer, Berlin, 1994). http://materials.springer.com/lb/docs/sm_lbs_978-3-540-47417-3_1119. Accessed 25 Dec 2017
  36. 36.
    B. Predel, Phase equilibria, crystallographic and thermodynamic data of binary alloys Cr-Cs-Cu-Zr, in Landolt-Börnstein - Group IV Physical Chemistry, ed. by O. Madelung, vol 5I (Springer, Berlin, 1998), http://materials.springer.com/lb/docs/sm_lbs_978-3-540-70692-2_2265. Accessed 25 Dec 2017
  37. 37.
    M. Nakayama, M. Kajihara, Mater. Trans. 55, 1266 (2014)CrossRefGoogle Scholar
  38. 38.
    A. Wierzbicka-Miernik, J. Wojewoda-Budka, K. Miernik, L. Litynska-Dobrzynsk, N. Schell, J. Alloys Compd. 693, 1102 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Toshikazu Satoh
    • 1
  • Toshitaka Ishizaki
    • 1
  • Masanori Usui
    • 1
  1. 1.Toyota Central R&D Labs. Inc.NagakuteJapan

Personalised recommendations