Skip to main content
Log in

Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and Cobalt (Co) doped zinc oxide (ZnO & CZx) nanoparticles were synthesized by Solvothermal method. The samples were studied by X-Ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), UV–Vis spectroscopy and Scanning and Transmission Electron Microscopy (SEM & TEM). Moreover the gas sensing properties of the nanoparticles for methane gas took place. Purity of the samples and Co concentration was investigated by EDS and ICP spectroscopy respectively. XRD results described the hexagonal wurtzite structure for all the samples in which crystallinity and the crystallites size decreased with increase of Co doping level. Using UV–Vis spectroscopy the band gap energy was evaluated and redshift of band gap energy was observed by increasing of Co concentration. SEM images demonstrated that nanoparticles were agglomerated with increase of Co doping level. TEM images revealed the nanoparticles size in the range 11–44 nm. Methane sensing properties was enhanced after Co doping of the ZnO nanoparticles for Co concentration up to 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.A. Al-Hassani, H.F. Abbas, W.M.A.W. Daud, Hydrogen production via decomposition of methane over activated carbons as catalysts: full factorial design. Int. J. Hydrog. Energy 39, 7004–7014 (2014)

    CAS  Google Scholar 

  2. J. Shan, W. Huang, L. Nguyen, Y. Yu, S. Zhang, Y. Li, A.I. Frenkel, F. Tao, Conversion of methane to methanol with a bent mono (µ-oxo) dinickel anchored on the internal surfaces of microspores. Langmuir 30, 8558–8569 (2014)

    CAS  Google Scholar 

  3. W. Eugster, G.W. Kling, Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies. Atmos. Meas. Technol. 5, 1925–1934 (2012)

    CAS  Google Scholar 

  4. N.M. Vuong, N.M. Hieu, H.N. Hieu, H. Yia, D. Kim, Y. Han, M. Kimb, Ni2O3-decorated SnO2 particulate films for methane gas sensors. Sens. Actuators B 192, 327–333 (2014)

    Google Scholar 

  5. J. Shen, T.J. Algeo, Q. Feng, L. Zhou, L. Feng, N. Zhang, J. Huang, Volcanically induced environmental change at the permian-triassic boundary: related to west siberian coal-field methane releases? J. Asian. Earth Sci. 75, 95–109 (2013)

    Google Scholar 

  6. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies. J. Mol. Liq. 216, 545–551 (2016)

    CAS  Google Scholar 

  7. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason. Sonochem. 42, 171–182 (2018)

    CAS  Google Scholar 

  8. Z. Salehi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Novel synthesis of Dy2Ce2O7 nanostructures via a facile combustion route. RSC Adv. 6, 26895–26901 (2016)

    CAS  Google Scholar 

  9. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach., J. Mater. Sci. 27:3918–3928 (2016). https://doi.org/10.1007/s10854-015-4243-1

    Article  CAS  Google Scholar 

  10. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Nd2Zr2O7-Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. 180, 27–30 (2016)

    CAS  Google Scholar 

  11. A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)

    CAS  Google Scholar 

  12. A.P. de Moura, R.C. Lima, M.L. Moreira, D.P. Volanti, J.W.M. Espinosa, M.O. Orlandi, P.S. Pizani, J.A. Varela, E. Longo, ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ion. 181, 775–780 (2010)

    Google Scholar 

  13. J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. J. Alloy Compd. 616, 614–617 (2014)

    CAS  Google Scholar 

  14. H. Gullapalli, V.S.M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P.M. Ajayan, Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6, 1641 (2010)

    CAS  Google Scholar 

  15. V. Pachauri, A. Vlandas, K. Kern, K. Balasubramanian, Site-specific self-assembled liquid-gated ZnO nanowire transistors for sensing applications. Small 6, 589 (2010)

    CAS  Google Scholar 

  16. X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, D. Golberg, Crit. Rev. Solid State Mater. Sci. 34, 190 (2009)

    CAS  Google Scholar 

  17. Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, G.Z. Cao, Adv. Mater. 21, 4087 (2009)

    CAS  Google Scholar 

  18. V. Postica, J. Gröttrup, R. Adelung, O. Lupan, A.K. Mishra, N.H. de Leeuw, N. Ababii, J.F.C. Carreira, J. Rodrigues, N.B. Sedrine, M.R. Correia, T. Monteiro, V. Sontea, Y.K. Mishra, A case study of the effects of metal doping on ZnO tetrapods with bismuth and tin oxides. Adv. Funct. Mater. 27, 1604676 (2017)

    Google Scholar 

  19. B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang, An ultrahigh responsivity (9.7 mA W– 1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures. Adv. Funct. Mater. 27, 1700264 (2017)

    Google Scholar 

  20. W. Lu, D. Zhu, X. Xiang, Synthesis and properties of Ce-doped ZnO as a sensor for 1,2-propanediol. J. Mater. Sci. 28, 18929–18935 (2017)

    CAS  Google Scholar 

  21. K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, R. Ladchumananandasivam, J.S. Aanand, M. Jayachandran, M. Maaza, Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sens. J. 16 2477–2483 (2016)

    CAS  Google Scholar 

  22. N.M. Vuong, N.M. Hieu, D. Kim, B.I.I. Choi, M. Kim, Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing. Appl. Surf. Sci. 317, 765–770 (2014)

    CAS  Google Scholar 

  23. Y.C. Liang, H.Y. Hsia, Y.R. Cheng, C.M. Lee, S.L. Liu, T.Y. Lin, C.C. Chung, Crystalline quality-dependent gas detection behaviors of zinc oxide-zinc chromite p-n heterostructures. CrystEngComm 17, 4190–4199 (2015)

    CAS  Google Scholar 

  24. J. Pivin, G. Socol, I. Mihailescu, P. Berthet, F. Singh, M. Patel, L. Vincent, Structure and magnetic properties of ZnO films doped with Co, Ni or Mn synthesized by pulsed laser deposition under low and high oxygen partial pressures. Thin Solid Films 517(2), 916–922 (2008)

    CAS  Google Scholar 

  25. N.F. Djaja, D.A. Montja, R. Saleh, The effect of Co incorporation into ZnO nanoparticles. Adv. Mater. Phys. Chem. 3, 33–41 (2013)

    Google Scholar 

  26. J. Sun, D. Cui, X. Chen, L. Zhang, H. Cai, H. Li, Design, modeling, microfabrication and characterization of novel micro thermal conductivity detector. Sens. Actuators B 160, 936–941 (2011)

    CAS  Google Scholar 

  27. L. Li, S. Niu, Y. Qu, Q. Zhang, H. Li, Y. Li, W. Zhao, J. Shi, One-pot synthesis ofuniform mesoporous rhodium oxide/alumina hybrid as high sensitivity andlow power consumption methane catalytic combustion micro-sensor. J. Mater. Chem. 22, 9263–9267 (2012)

    CAS  Google Scholar 

  28. J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou, Y. Chen, Synthesis and characterization of cobalt-doped ZnO microstructuresfor methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016)

    CAS  Google Scholar 

  29. P.K. Basu, P. Bhattacharyya, N. Saha, H. Saha, S. Basu, The superior performance of the electrochemically grown ZnO thin films as methanesensor. Sens. Actuators B 133, 357–363 (2008)

    CAS  Google Scholar 

  30. P.K. Basu, S.K. Jana, H. Saha et al., Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sens. Actuators B 135(1), 81–88 (2008)

    CAS  Google Scholar 

  31. B. Pal, P.K. Giri, High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles. J. Appl. Phys. 108, 084322 (2010)

    Google Scholar 

  32. T.P. Chen, S.P. Chang, F.Y. Hung, S.J. Chang, Z.S. Hu, K.J. Chen, Simple fabrication process for 2D ZnO nanowalls and their potential application as a methane sensor. Sensors 13, 3941–3950 (2013)

    CAS  Google Scholar 

  33. B. Pal, S. Dhara, P.K. Giri, D. Sarkar, Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route. J. All.& Comp. 615, 378–385 (2014)

    CAS  Google Scholar 

  34. K. Shomalian, M.-M. Bagheri-Mohagheghi, M. Ardyanian, Characterization and study of reduction and sulfurization processing in phase transition from molybdenum oxide (MoO2) to molybdenum disulfide (MoS2) chalcogenide semiconductor nanoparticles prepared by one-stage chemical reduction method. Appl. Phys. A 123, 93 (2017)

    Google Scholar 

  35. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties. Physica B 407, 1223–1226 (2012)

    CAS  Google Scholar 

  36. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanopart -icles synthesized by coprecipitation method. J. Phys. Chem. C 118(18), 9715–9725 (2014)

    CAS  Google Scholar 

  37. T.M. Hammad, J.K. Salem, R.G. Harrison, Structure, optical properties and synthesis of Co-doped ZnO superstructures. Appl. Nanosci. 3, 133–139 (2013)

    CAS  Google Scholar 

  38. S. Bhattacharyya, A. Gedanken, Synthesis, characterization and room temperature ferromagnetism in cobalt-doped zinc oxide (ZnO:Co2+) nanocrystals encapsulated in carbon. J. Phys. Chem. C 112, 4517 (2008)

    CAS  Google Scholar 

  39. V.K. Sharma, M. Najim, A.K. Srivastava, G.D. Varma, Structural and magnetic studies on transition metal (Mn, Co) doped ZnO nanoparticles. J. Magn. Magn. Mater. 324, 683–689 (2012)

    CAS  Google Scholar 

  40. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu Doped ZnO nanopowders by coprecipitation method. Opt. Mater. 34, 1946–1953 (2012)

    CAS  Google Scholar 

  41. A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis. J. Alloys Compd. 509, 5349–5355 (2011)

    Google Scholar 

  42. L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys 5, 17–26 (1921)

    CAS  Google Scholar 

  43. N. Bahadur, A.K. Srivastava, S. Kumar, M. Deepa, B. Nag, Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films. Thin Solid Films 518, 5257 (2010)

    CAS  Google Scholar 

  44. P.K. Sharma, R.K. Dutta, A.C. Pandey, S. Layek, H.C. Verma, Effect of iron doping concentration on magnetic properties of ZnO nanoparticles. J. Magn. Magn. Mater. 321(17), 2587–2591 (2009)

    CAS  Google Scholar 

  45. P. Bhattacharyya, P.K. Basu, S. Basu, Fast response methane sensor usingnanocrystalline zinc oxide thin films derived by sol-gel method. Sens. Actuators B 124, 62–67 (2007)

    CAS  Google Scholar 

  46. H.M. Jeong, H.J. Kim, P. Rai et al., Cr-doped Co3O4 nanorods as chemiresistor for ultra selective monitoring of methyl benzene. Sens. Actuators B 201, 482–489 (2014)

    CAS  Google Scholar 

  47. D.X. Ju, H.Y. Xu, Q. Xu, H.B. Gong, Z.W. Qiu, J. Guo, J. Zhang, B.Q. Cao, High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens. Actuators B.215, 39–44 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Damghan University in I. R. Iran; the authors thanks Mr. A. Daryani and Mr. H. Azimi Jouybari for assisting during this project, Dr. M. Amiri for ICP and Dr. A. Gholizadeh for his helpful discussing about XRD results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ardyanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghagoli, Z., Ardyanian, M. Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures. J Mater Sci: Mater Electron 29, 7130–7141 (2018). https://doi.org/10.1007/s10854-018-8701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8701-4

Navigation