Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures

Article
  • 69 Downloads

Abstract

Undoped and Cobalt (Co) doped zinc oxide (ZnO & CZx) nanoparticles were synthesized by Solvothermal method. The samples were studied by X-Ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), UV–Vis spectroscopy and Scanning and Transmission Electron Microscopy (SEM & TEM). Moreover the gas sensing properties of the nanoparticles for methane gas took place. Purity of the samples and Co concentration was investigated by EDS and ICP spectroscopy respectively. XRD results described the hexagonal wurtzite structure for all the samples in which crystallinity and the crystallites size decreased with increase of Co doping level. Using UV–Vis spectroscopy the band gap energy was evaluated and redshift of band gap energy was observed by increasing of Co concentration. SEM images demonstrated that nanoparticles were agglomerated with increase of Co doping level. TEM images revealed the nanoparticles size in the range 11–44 nm. Methane sensing properties was enhanced after Co doping of the ZnO nanoparticles for Co concentration up to 4%.

Notes

Acknowledgements

This work was supported by the Research Council of Damghan University in I. R. Iran; the authors thanks Mr. A. Daryani and Mr. H. Azimi Jouybari for assisting during this project, Dr. M. Amiri for ICP and Dr. A. Gholizadeh for his helpful discussing about XRD results.

References

  1. 1.
    A.A. Al-Hassani, H.F. Abbas, W.M.A.W. Daud, Hydrogen production via decomposition of methane over activated carbons as catalysts: full factorial design. Int. J. Hydrog. Energy 39, 7004–7014 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Shan, W. Huang, L. Nguyen, Y. Yu, S. Zhang, Y. Li, A.I. Frenkel, F. Tao, Conversion of methane to methanol with a bent mono (µ-oxo) dinickel anchored on the internal surfaces of microspores. Langmuir 30, 8558–8569 (2014)CrossRefGoogle Scholar
  3. 3.
    W. Eugster, G.W. Kling, Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies. Atmos. Meas. Technol. 5, 1925–1934 (2012)CrossRefGoogle Scholar
  4. 4.
    N.M. Vuong, N.M. Hieu, H.N. Hieu, H. Yia, D. Kim, Y. Han, M. Kimb, Ni2O3-decorated SnO2 particulate films for methane gas sensors. Sens. Actuators B 192, 327–333 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Shen, T.J. Algeo, Q. Feng, L. Zhou, L. Feng, N. Zhang, J. Huang, Volcanically induced environmental change at the permian-triassic boundary: related to west siberian coal-field methane releases? J. Asian. Earth Sci. 75, 95–109 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies. J. Mol. Liq. 216, 545–551 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason. Sonochem. 42, 171–182 (2018)CrossRefGoogle Scholar
  8. 8.
    Z. Salehi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Novel synthesis of Dy2Ce2O7 nanostructures via a facile combustion route. RSC Adv. 6, 26895–26901 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach., J. Mater. Sci. 27:3918–3928 (2016).  https://doi.org/10.1007/s10854-015-4243-1 Google Scholar
  10. 10.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Nd2Zr2O7-Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. 180, 27–30 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)CrossRefGoogle Scholar
  12. 12.
    A.P. de Moura, R.C. Lima, M.L. Moreira, D.P. Volanti, J.W.M. Espinosa, M.O. Orlandi, P.S. Pizani, J.A. Varela, E. Longo, ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ion. 181, 775–780 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. J. Alloy Compd. 616, 614–617 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Gullapalli, V.S.M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P.M. Ajayan, Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6, 1641 (2010)CrossRefGoogle Scholar
  15. 15.
    V. Pachauri, A. Vlandas, K. Kern, K. Balasubramanian, Site-specific self-assembled liquid-gated ZnO nanowire transistors for sensing applications. Small 6, 589 (2010)CrossRefGoogle Scholar
  16. 16.
    X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, D. Golberg, Crit. Rev. Solid State Mater. Sci. 34, 190 (2009)CrossRefGoogle Scholar
  17. 17.
    Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, G.Z. Cao, Adv. Mater. 21, 4087 (2009)CrossRefGoogle Scholar
  18. 18.
    V. Postica, J. Gröttrup, R. Adelung, O. Lupan, A.K. Mishra, N.H. de Leeuw, N. Ababii, J.F.C. Carreira, J. Rodrigues, N.B. Sedrine, M.R. Correia, T. Monteiro, V. Sontea, Y.K. Mishra, A case study of the effects of metal doping on ZnO tetrapods with bismuth and tin oxides. Adv. Funct. Mater. 27, 1604676 (2017)CrossRefGoogle Scholar
  19. 19.
    B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang, An ultrahigh responsivity (9.7 mA W– 1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures. Adv. Funct. Mater. 27, 1700264 (2017)CrossRefGoogle Scholar
  20. 20.
    W. Lu, D. Zhu, X. Xiang, Synthesis and properties of Ce-doped ZnO as a sensor for 1,2-propanediol. J. Mater. Sci. 28, 18929–18935 (2017)Google Scholar
  21. 21.
    K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, R. Ladchumananandasivam, J.S. Aanand, M. Jayachandran, M. Maaza, Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sens. J. 16 2477–2483 (2016)CrossRefGoogle Scholar
  22. 22.
    N.M. Vuong, N.M. Hieu, D. Kim, B.I.I. Choi, M. Kim, Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing. Appl. Surf. Sci. 317, 765–770 (2014)CrossRefGoogle Scholar
  23. 23.
    Y.C. Liang, H.Y. Hsia, Y.R. Cheng, C.M. Lee, S.L. Liu, T.Y. Lin, C.C. Chung, Crystalline quality-dependent gas detection behaviors of zinc oxide-zinc chromite p-n heterostructures. CrystEngComm 17, 4190–4199 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Pivin, G. Socol, I. Mihailescu, P. Berthet, F. Singh, M. Patel, L. Vincent, Structure and magnetic properties of ZnO films doped with Co, Ni or Mn synthesized by pulsed laser deposition under low and high oxygen partial pressures. Thin Solid Films 517(2), 916–922 (2008)CrossRefGoogle Scholar
  25. 25.
    N.F. Djaja, D.A. Montja, R. Saleh, The effect of Co incorporation into ZnO nanoparticles. Adv. Mater. Phys. Chem. 3, 33–41 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Sun, D. Cui, X. Chen, L. Zhang, H. Cai, H. Li, Design, modeling, microfabrication and characterization of novel micro thermal conductivity detector. Sens. Actuators B 160, 936–941 (2011)CrossRefGoogle Scholar
  27. 27.
    L. Li, S. Niu, Y. Qu, Q. Zhang, H. Li, Y. Li, W. Zhao, J. Shi, One-pot synthesis ofuniform mesoporous rhodium oxide/alumina hybrid as high sensitivity andlow power consumption methane catalytic combustion micro-sensor. J. Mater. Chem. 22, 9263–9267 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou, Y. Chen, Synthesis and characterization of cobalt-doped ZnO microstructuresfor methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016)CrossRefGoogle Scholar
  29. 29.
    P.K. Basu, P. Bhattacharyya, N. Saha, H. Saha, S. Basu, The superior performance of the electrochemically grown ZnO thin films as methanesensor. Sens. Actuators B 133, 357–363 (2008)CrossRefGoogle Scholar
  30. 30.
    P.K. Basu, S.K. Jana, H. Saha et al., Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sens. Actuators B 135(1), 81–88 (2008)CrossRefGoogle Scholar
  31. 31.
    B. Pal, P.K. Giri, High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles. J. Appl. Phys. 108, 084322 (2010)CrossRefGoogle Scholar
  32. 32.
    T.P. Chen, S.P. Chang, F.Y. Hung, S.J. Chang, Z.S. Hu, K.J. Chen, Simple fabrication process for 2D ZnO nanowalls and their potential application as a methane sensor. Sensors 13, 3941–3950 (2013)CrossRefGoogle Scholar
  33. 33.
    B. Pal, S. Dhara, P.K. Giri, D. Sarkar, Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route. J. All.& Comp. 615, 378–385 (2014)CrossRefGoogle Scholar
  34. 34.
    K. Shomalian, M.-M. Bagheri-Mohagheghi, M. Ardyanian, Characterization and study of reduction and sulfurization processing in phase transition from molybdenum oxide (MoO2) to molybdenum disulfide (MoS2) chalcogenide semiconductor nanoparticles prepared by one-stage chemical reduction method. Appl. Phys. A 123, 93 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties. Physica B 407, 1223–1226 (2012)CrossRefGoogle Scholar
  36. 36.
    V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanopart -icles synthesized by coprecipitation method. J. Phys. Chem. C 118(18), 9715–9725 (2014)CrossRefGoogle Scholar
  37. 37.
    T.M. Hammad, J.K. Salem, R.G. Harrison, Structure, optical properties and synthesis of Co-doped ZnO superstructures. Appl. Nanosci. 3, 133–139 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Bhattacharyya, A. Gedanken, Synthesis, characterization and room temperature ferromagnetism in cobalt-doped zinc oxide (ZnO:Co2+) nanocrystals encapsulated in carbon. J. Phys. Chem. C 112, 4517 (2008)CrossRefGoogle Scholar
  39. 39.
    V.K. Sharma, M. Najim, A.K. Srivastava, G.D. Varma, Structural and magnetic studies on transition metal (Mn, Co) doped ZnO nanoparticles. J. Magn. Magn. Mater. 324, 683–689 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu Doped ZnO nanopowders by coprecipitation method. Opt. Mater. 34, 1946–1953 (2012)CrossRefGoogle Scholar
  41. 41.
    A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis. J. Alloys Compd. 509, 5349–5355 (2011)CrossRefGoogle Scholar
  42. 42.
    L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys 5, 17–26 (1921)CrossRefGoogle Scholar
  43. 43.
    N. Bahadur, A.K. Srivastava, S. Kumar, M. Deepa, B. Nag, Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films. Thin Solid Films 518, 5257 (2010)CrossRefGoogle Scholar
  44. 44.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, S. Layek, H.C. Verma, Effect of iron doping concentration on magnetic properties of ZnO nanoparticles. J. Magn. Magn. Mater. 321(17), 2587–2591 (2009)CrossRefGoogle Scholar
  45. 45.
    P. Bhattacharyya, P.K. Basu, S. Basu, Fast response methane sensor usingnanocrystalline zinc oxide thin films derived by sol-gel method. Sens. Actuators B 124, 62–67 (2007)CrossRefGoogle Scholar
  46. 46.
    H.M. Jeong, H.J. Kim, P. Rai et al., Cr-doped Co3O4 nanorods as chemiresistor for ultra selective monitoring of methyl benzene. Sens. Actuators B 201, 482–489 (2014)CrossRefGoogle Scholar
  47. 47.
    D.X. Ju, H.Y. Xu, Q. Xu, H.B. Gong, Z.W. Qiu, J. Guo, J. Zhang, B.Q. Cao, High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens. Actuators B.215, 39–44 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Center for Solid State Physics ResearchDamghan UniversityDamghanIran

Personalised recommendations