Skip to main content
Log in

Flexible special-structured Janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a facile and highly-effective method to assemble luminescent–magnetic–electrical tri-functionalities into the special-structured Janus nanofibers. Novel and brand-new flexible special-structured [coaxial nanocable]//[nanofiber] Janus nanofibers synchronously endued with tuned and enhanced luminescent–magnetic–electrical trifunctionality have been prepared via electrospinning technology using a homemade coaxis//monoaxis spinneret for the first time. Each special-structured Janus nanofiber consists of a coaxial nanocable made of Fe3O4/PVP core and Eu(BA)3phen/PVP shell as a half side with luminescent–magnetic bifunctionality and polyaniline (PANI)/PVP nanofiber as the other half side with electrically conductive functionality. The special and novel Janus nanofiber not only can guarantee effective separation of Fe3O4 nanoparticles (NPs) and PANI from rare earth complex, but also ensure the continuity of PANI in the matrix. It is satisfactorily found that the luminescent intensity of the novel special-structured Janus nanofibers respectively reaches up to 10 and 22 times higher than those of counterpart conventional [nanofiber]//[nanofiber] Janus nanofibers and composite nanofibers owing to its peculiar nanostructure. Compared with the counterpart conventional Janus nanofibers of two independent partitions, coaxial nanocable is used as one side of the special-structured Janus nanofiber instead of nanofiber, and three independent partitions are successfully realized in the special-structured Janus nanofiber, thus the interferences among various functions are further reduced, leading to the fact that more excellent multifunctionalities can be obtained. The novel Janus nanofibers possess excellent fluorescence, superparamagnetism and electric conductivity, and further, these performances can be respectively tunable via modulating the respective Eu(BA)3phen, Fe3O4 and PANI contents. The design philosophy and the construction technique for the special-structured Janus nanofibers are of universal significance for the fabrication of other multifunctional Janus nanofiber of various performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.X. Sun, L.X. Zhang, Y.B. Wang, P. Chen, S.X. Xin, H.F. Jiu, J.W. Liu, J. Alloys Compd. 586, 441–447 (2014)

    CAS  Google Scholar 

  2. G.X. Yang, R.C. Lv, S.L. Gai, Y.L. Dai, F. He, P.P. Yang, Inorg. Chem. 53, 10917–10927 (2014)

    CAS  Google Scholar 

  3. J.P. Cheng, B.B. Wang, M.G. Zhao, F. Liu, X.B. Zhang, Sens. Actuators. B 190, 78–85 (2014)

    CAS  Google Scholar 

  4. S.J. Peng, L.L. Li, Y.X. Hu, M. Srinivasan, F.Y. Cheng, J. Chen, S. Ramakrishna, ACS Nano 9, 1945–1954 (2015)

    CAS  Google Scholar 

  5. C.Y. Tay, M.I. Setyawati, J.P. Xie, W.J. Parak, D.T. Leong, Adv. Funct. Mater. 24, 5936–5955 (2014)

    CAS  Google Scholar 

  6. Y. Wang, Y. Cui, Y.T. Zhao, B. He, X.L. Shi, D.H. Di, Q. Zhang, S.L. Wang, Eur. J. Pharm. Biopharm. 117, 105–115 (2017)

    CAS  Google Scholar 

  7. D. Jaque, C. Richard, B. Viana, K. Soga, X.G. Liu, J. García Solé, Adv. Opt. Photonics 8, 1–103 (2016)

    Google Scholar 

  8. S. Rittikulsittichai, B. Singhana, W.W. Bryan, S. Sarangi, A.C. Jamison, A. Brazdeikis, RSC Adv. 3, 7838–7849 (2013)

    CAS  Google Scholar 

  9. W. Park, A.C. Gordon, S. Cho, X.K. Huang, K.R. Harris, A.C. Larson, D.H. Kim, ACS Appl. Mater. Inter. 9, 13819–13824 (2017)

    CAS  Google Scholar 

  10. R. Singh, D.W. Ho, L.Y. Lim, K.S. Iyer, N.M. Smith, ACS Omega 1, 1114–1120 (2016)

    CAS  Google Scholar 

  11. M. Bayat, H. Yang, F.K. Ko, D. Michelson, A. Mei, Polymer 55, 936–943 (2014)

    CAS  Google Scholar 

  12. S. Biswas, S.S. Panja, S. Bose, Mater. Chem. Front. 1, 132–145 (2016)

    Google Scholar 

  13. J.H. Zhu, S.Y. Wei, N. Haldolaarachchige, D.P. Young, Z.H. Guo, J. Phys. Chem. C 115, 15304–15310 (2011)

    CAS  Google Scholar 

  14. D. Zhang, J. Cheng, X. Yang, B. Zhao, M. Cao, J. Mater. Sci. 49, 7221–7230 (2014)

    CAS  Google Scholar 

  15. Q.M. Kainz, O. Reise, Accounts Chem. Res. 47, 667–677 (2014)

    CAS  Google Scholar 

  16. D.F. Zhang, F.X. Xu, J. Lin, Z.D. Yang, M. Zhang, Carbon 80, 103–111 (2014)

    CAS  Google Scholar 

  17. S.C. Wuang, K.G. Neoh, E.T. Kang, D.W. Pack, D.E. Leckband, J. Mater. Chem. 17, 3354–3362 (2007)

    CAS  Google Scholar 

  18. J.H. Gao, H.W. Gu, B. Xu, Accounts Chem. Res. 42, 1097–1107 (2009)

    CAS  Google Scholar 

  19. R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao, S.H. Sun, Adv. Mater. 22, 2729–2742 (2010)

    CAS  Google Scholar 

  20. X.F. Lu, C. Wang, Y. Wei, Small 5, 2349–2370 (2009)

    CAS  Google Scholar 

  21. K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 279, 231–240 (2015)

    CAS  Google Scholar 

  22. Z.Y. Hou, P.P. Yang, C.X. Li, L.L. Wang, H.Z. Lian, Z.W. Quan, J. Lin, Chem. Mater. 20, 6686–6696 (2008)

    CAS  Google Scholar 

  23. J. Tian, Q.L. Ma, X.T. Dong, M. Yang, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 26, 8413–8420 (2015)

    CAS  Google Scholar 

  24. X. Xi, Q.L. Ma, X.T. Dong, X.T. Wang, W.S. Yu, G.X. Liu, IEEE Trans. Nanotechnol. 14, 243–249 (2015)

    CAS  Google Scholar 

  25. L. Han, Y.H. Hu, M.M. Pan, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, CrystEngComm. 17, 2529–2535 (2015)

    CAS  Google Scholar 

  26. L. Han, M.M. Pan, Y.H. Hu, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, J. Am. Ceram. Soc. 98, 2817–2822 (2015)

    CAS  Google Scholar 

  27. L. Han, Q.L. Ma, X.T. Dong, RSC Adv. 5, 95674–95681 (2015)

    CAS  Google Scholar 

  28. F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, New J. Chem. 39, 3444–3451 (2015)

    CAS  Google Scholar 

  29. F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, ChemPlusChem. 79, 1713–1719 (2014)

    CAS  Google Scholar 

  30. D.D. Yin, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem. 80, 568–575 (2015)

    CAS  Google Scholar 

  31. D. Li, Q.L. Ma, Y. Song, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 18, 27536–27544 (2016)

    CAS  Google Scholar 

  32. H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 21845–21855 (2015)

    CAS  Google Scholar 

  33. L.W. Huang, J.T. Arena, S.S. Manickam, X.Q. Jiang, B.G. Willis, J.R. Mccutcheon, J. Membr. Sci. 460, 241–249 (2014)

    CAS  Google Scholar 

  34. J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)

    Google Scholar 

  35. Y. Mizuno, E. Hosono, T. Saito, M. Okubo, D. Nishio-Hamane, K. Oh-Ishi, T. Kudo, H.S. Zhou, J. Phys. Chem. C 116, 10774–10780 (2012)

    CAS  Google Scholar 

  36. S.N. Jayasinghe, Analyst 138, 2215–2223 (2013)

    CAS  Google Scholar 

  37. K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Ying, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 279, 231–240 (2015)

    CAS  Google Scholar 

  38. Y.W. Liu, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 22977–22984 (2015)

    CAS  Google Scholar 

  39. S.J. Sheng, Q.L. Ma, J.X. Wang, L. Nan, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 25, 1309–1316 (2014)

    CAS  Google Scholar 

  40. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)

    CAS  Google Scholar 

  41. N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 243, 500–508 (2014)

    CAS  Google Scholar 

  42. N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem. 79, 690–697 (2014)

    CAS  Google Scholar 

  43. Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang, B.Y. Chen, Mater. Charact. 61, 489–492 (2010)

    CAS  Google Scholar 

  44. S. Meshkova, J. Fluoresc. 10, 333–337 (2000)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51573023, 50972020), Natural Science Foundation of Jilin Province of China (20170101101JC), Industrial Technology Research and Development Project of Jilin Province Development and Reform Commission (2017C051), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th Five-Year Plan Period (JJKH20170608KJ), Youth Foundation of Changchun University of Science and Technology (No. XQNJJ-2016-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangting Dong or Wensheng Yu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Ma, Q., Dong, X. et al. Flexible special-structured Janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism. J Mater Sci: Mater Electron 29, 7119–7129 (2018). https://doi.org/10.1007/s10854-018-8700-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8700-5

Navigation