Flexible special-structured Janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism

Article
  • 25 Downloads

Abstract

We report a facile and highly-effective method to assemble luminescent–magnetic–electrical tri-functionalities into the special-structured Janus nanofibers. Novel and brand-new flexible special-structured [coaxial nanocable]//[nanofiber] Janus nanofibers synchronously endued with tuned and enhanced luminescent–magnetic–electrical trifunctionality have been prepared via electrospinning technology using a homemade coaxis//monoaxis spinneret for the first time. Each special-structured Janus nanofiber consists of a coaxial nanocable made of Fe3O4/PVP core and Eu(BA)3phen/PVP shell as a half side with luminescent–magnetic bifunctionality and polyaniline (PANI)/PVP nanofiber as the other half side with electrically conductive functionality. The special and novel Janus nanofiber not only can guarantee effective separation of Fe3O4 nanoparticles (NPs) and PANI from rare earth complex, but also ensure the continuity of PANI in the matrix. It is satisfactorily found that the luminescent intensity of the novel special-structured Janus nanofibers respectively reaches up to 10 and 22 times higher than those of counterpart conventional [nanofiber]//[nanofiber] Janus nanofibers and composite nanofibers owing to its peculiar nanostructure. Compared with the counterpart conventional Janus nanofibers of two independent partitions, coaxial nanocable is used as one side of the special-structured Janus nanofiber instead of nanofiber, and three independent partitions are successfully realized in the special-structured Janus nanofiber, thus the interferences among various functions are further reduced, leading to the fact that more excellent multifunctionalities can be obtained. The novel Janus nanofibers possess excellent fluorescence, superparamagnetism and electric conductivity, and further, these performances can be respectively tunable via modulating the respective Eu(BA)3phen, Fe3O4 and PANI contents. The design philosophy and the construction technique for the special-structured Janus nanofibers are of universal significance for the fabrication of other multifunctional Janus nanofiber of various performances.

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51573023, 50972020), Natural Science Foundation of Jilin Province of China (20170101101JC), Industrial Technology Research and Development Project of Jilin Province Development and Reform Commission (2017C051), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th Five-Year Plan Period (JJKH20170608KJ), Youth Foundation of Changchun University of Science and Technology (No. XQNJJ-2016-01).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    Y.X. Sun, L.X. Zhang, Y.B. Wang, P. Chen, S.X. Xin, H.F. Jiu, J.W. Liu, J. Alloys Compd. 586, 441–447 (2014)CrossRefGoogle Scholar
  2. 2.
    G.X. Yang, R.C. Lv, S.L. Gai, Y.L. Dai, F. He, P.P. Yang, Inorg. Chem. 53, 10917–10927 (2014)CrossRefGoogle Scholar
  3. 3.
    J.P. Cheng, B.B. Wang, M.G. Zhao, F. Liu, X.B. Zhang, Sens. Actuators. B 190, 78–85 (2014)CrossRefGoogle Scholar
  4. 4.
    S.J. Peng, L.L. Li, Y.X. Hu, M. Srinivasan, F.Y. Cheng, J. Chen, S. Ramakrishna, ACS Nano 9, 1945–1954 (2015)CrossRefGoogle Scholar
  5. 5.
    C.Y. Tay, M.I. Setyawati, J.P. Xie, W.J. Parak, D.T. Leong, Adv. Funct. Mater. 24, 5936–5955 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, Y. Cui, Y.T. Zhao, B. He, X.L. Shi, D.H. Di, Q. Zhang, S.L. Wang, Eur. J. Pharm. Biopharm. 117, 105–115 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Jaque, C. Richard, B. Viana, K. Soga, X.G. Liu, J. García Solé, Adv. Opt. Photonics 8, 1–103 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Rittikulsittichai, B. Singhana, W.W. Bryan, S. Sarangi, A.C. Jamison, A. Brazdeikis, RSC Adv. 3, 7838–7849 (2013)CrossRefGoogle Scholar
  9. 9.
    W. Park, A.C. Gordon, S. Cho, X.K. Huang, K.R. Harris, A.C. Larson, D.H. Kim, ACS Appl. Mater. Inter. 9, 13819–13824 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Singh, D.W. Ho, L.Y. Lim, K.S. Iyer, N.M. Smith, ACS Omega 1, 1114–1120 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Bayat, H. Yang, F.K. Ko, D. Michelson, A. Mei, Polymer 55, 936–943 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Biswas, S.S. Panja, S. Bose, Mater. Chem. Front. 1, 132–145 (2016)CrossRefGoogle Scholar
  13. 13.
    J.H. Zhu, S.Y. Wei, N. Haldolaarachchige, D.P. Young, Z.H. Guo, J. Phys. Chem. C 115, 15304–15310 (2011)CrossRefGoogle Scholar
  14. 14.
    D. Zhang, J. Cheng, X. Yang, B. Zhao, M. Cao, J. Mater. Sci. 49, 7221–7230 (2014)CrossRefGoogle Scholar
  15. 15.
    Q.M. Kainz, O. Reise, Accounts Chem. Res. 47, 667–677 (2014)CrossRefGoogle Scholar
  16. 16.
    D.F. Zhang, F.X. Xu, J. Lin, Z.D. Yang, M. Zhang, Carbon 80, 103–111 (2014)CrossRefGoogle Scholar
  17. 17.
    S.C. Wuang, K.G. Neoh, E.T. Kang, D.W. Pack, D.E. Leckband, J. Mater. Chem. 17, 3354–3362 (2007)CrossRefGoogle Scholar
  18. 18.
    J.H. Gao, H.W. Gu, B. Xu, Accounts Chem. Res. 42, 1097–1107 (2009)CrossRefGoogle Scholar
  19. 19.
    R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao, S.H. Sun, Adv. Mater. 22, 2729–2742 (2010)CrossRefGoogle Scholar
  20. 20.
    X.F. Lu, C. Wang, Y. Wei, Small 5, 2349–2370 (2009)CrossRefGoogle Scholar
  21. 21.
    K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 279, 231–240 (2015)CrossRefGoogle Scholar
  22. 22.
    Z.Y. Hou, P.P. Yang, C.X. Li, L.L. Wang, H.Z. Lian, Z.W. Quan, J. Lin, Chem. Mater. 20, 6686–6696 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Tian, Q.L. Ma, X.T. Dong, M. Yang, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 26, 8413–8420 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Xi, Q.L. Ma, X.T. Dong, X.T. Wang, W.S. Yu, G.X. Liu, IEEE Trans. Nanotechnol. 14, 243–249 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Han, Y.H. Hu, M.M. Pan, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, CrystEngComm. 17, 2529–2535 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Han, M.M. Pan, Y.H. Hu, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, J. Am. Ceram. Soc. 98, 2817–2822 (2015)CrossRefGoogle Scholar
  27. 27.
    L. Han, Q.L. Ma, X.T. Dong, RSC Adv. 5, 95674–95681 (2015)CrossRefGoogle Scholar
  28. 28.
    F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, New J. Chem. 39, 3444–3451 (2015)CrossRefGoogle Scholar
  29. 29.
    F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, ChemPlusChem. 79, 1713–1719 (2014)Google Scholar
  30. 30.
    D.D. Yin, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem. 80, 568–575 (2015)CrossRefGoogle Scholar
  31. 31.
    D. Li, Q.L. Ma, Y. Song, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 18, 27536–27544 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 21845–21855 (2015)CrossRefGoogle Scholar
  33. 33.
    L.W. Huang, J.T. Arena, S.S. Manickam, X.Q. Jiang, B.G. Willis, J.R. Mccutcheon, J. Membr. Sci. 460, 241–249 (2014)CrossRefGoogle Scholar
  34. 34.
    J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Mizuno, E. Hosono, T. Saito, M. Okubo, D. Nishio-Hamane, K. Oh-Ishi, T. Kudo, H.S. Zhou, J. Phys. Chem. C 116, 10774–10780 (2012)CrossRefGoogle Scholar
  36. 36.
    S.N. Jayasinghe, Analyst 138, 2215–2223 (2013)CrossRefGoogle Scholar
  37. 37.
    K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Ying, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 279, 231–240 (2015)CrossRefGoogle Scholar
  38. 38.
    Y.W. Liu, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 22977–22984 (2015)CrossRefGoogle Scholar
  39. 39.
    S.J. Sheng, Q.L. Ma, J.X. Wang, L. Nan, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 25, 1309–1316 (2014)CrossRefGoogle Scholar
  40. 40.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)CrossRefGoogle Scholar
  41. 41.
    N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 243, 500–508 (2014)CrossRefGoogle Scholar
  42. 42.
    N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem. 79, 690–697 (2014)CrossRefGoogle Scholar
  43. 43.
    Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang, B.Y. Chen, Mater. Charact. 61, 489–492 (2010)CrossRefGoogle Scholar
  44. 44.
    S. Meshkova, J. Fluoresc. 10, 333–337 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin ProvinceChangchun University of Science and TechnologyChangchunChina

Personalised recommendations