Skip to main content
Log in

Co2SiO4 nanostructures/nanocomposites: synthesis and investigations of optical, magnetic, photocatalytic, thermal stability and flame retardant properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt orthosilicate (Co2SiO4) nanostructures and nanocomposites were successfully synthesized via a sol–gel method, by controlling different conditions. The gels were prepared starting from cobalt (II) acetatete tetrahydrate (Co(CH3COO)2·4H2O), tetraethyl orthosilicate, NH3 and carbohydrate at calcination temperature 500–700 °C for 5 h. We choose 700 °C as optimum calcination temperature base on XRD results. SEM images showed that NH3 and glucose are optimum catalysis and capping agent, respectively, in our experimental conditions. For the first time, glucose, fructose, sucrose, maltose and lactose were applied as capping agents to green synthesis of cobalt orthosilicates. The optical and magnetic properties of Co2SiO4 nanostructures were investigated by UV–Vis and VSM, respectively. Also, for the first time photocatalytic behavior of these nanostructures was evaluated using UV–Vis and degradation of methyl orange, methylene blue, erythrosine and eosine. DSC and TG curves of the nanocomposites showed both thermal stability and flame retardant property for Co2SiO4 nanocomposites prepared in the presence of the PS and PSU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Sazonov, M. Meven, V. Hutanu, G. Heger, T. Hansen, A. Gukasov, Acta Cryst. B 65, 664–675 (2009)

    CAS  Google Scholar 

  2. X. Jiang, G.Y. Guo, Int. Symp. Adv. Magn. Technol. 282, 287–290 (2004)

    CAS  Google Scholar 

  3. Q. Tang, R. Dieckmann, J. Cryst. Growth 317, 119–127 (2011)

    CAS  Google Scholar 

  4. H. Cui, M. Zayat, D. Levy, J. Sol-Gel Sci. 40, 83–87 (2006)

    CAS  Google Scholar 

  5. H. Taguchi, Y. Takeda, H. Shibahara, Mater. Lett. 52, 412–416 (2002)

    CAS  Google Scholar 

  6. H.K. Lin, H.C. Chiu, H.C. Tsai, S.H. Chien, C.B. Wang, Catal. Lett. 88, 169–174 (2003)

    CAS  Google Scholar 

  7. C. Cantalini, M. Post, D. Buso, M. Guglielmi, A. Martucci, Sens. Actuators B 108, 184–192 (2005)

    CAS  Google Scholar 

  8. R. Bouarab, O. Akdim, A. Auroux, O. Cherifi, C. Mirodatos, Appl. Catal. A 264, 161–168 (2004)

    CAS  Google Scholar 

  9. W.K. Jozwiak, E. Szubiakiewicz, J. Goralski, A. Klonkowski, T. Paryjczak, Kinet. Catal. 45, 247–255 (2004)

    CAS  Google Scholar 

  10. E. Ruckenstein, H.Y. Wang, Appl. Catal. A 204 257–263 (2000)

    CAS  Google Scholar 

  11. J.M. Jabłonski, J. Okal, D. Potoczna-Petru, L. Krajczyk, J. Catal. 220, 146–160 (2003)

    Google Scholar 

  12. F. Djerboua, D. Benachour, R. Touroude, Appl. Catal. A 282, 123–133 (2005)

    CAS  Google Scholar 

  13. M.L. Kantam, B.P.C. Rao, R.S. Reddy, N.S. Sekhar, B. Sreedhar, B.M. Choudary, J. Mol. Catal. A 272, 1–5 (2007)

    CAS  Google Scholar 

  14. M.S. Ghattas, Microporous Mesoporous Mater. 97, 107–113 (2006)

    CAS  Google Scholar 

  15. T. Mochizuki, T. Hara, N. Koizumi, M. Yamada, Appl. Catal. A 317, 97–104 (2007)

    CAS  Google Scholar 

  16. T.K. Das, W.A. Conner, J. Li, G. Jacobs, M.E. Dry, B.H. Davis, Energy Fuels 19, 1430–1439 (2005)

    CAS  Google Scholar 

  17. A. Martinez, C. Lopez, F. Marquez, I. Diaz, J. Catal. 220, 486–499 (2003)

    CAS  Google Scholar 

  18. O. Tamada, Mineral. J. 10, 71–83 (1980)

    CAS  Google Scholar 

  19. R.A. Robie, B.S. Hemingway, H. Takei, Am. Mineral 67, 470–482 (1982)

    CAS  Google Scholar 

  20. A. M.Llusar, J.A. Fores, J. Badenes, M.A. Calbo, Tena, G. Monros. J. Eur. Ceram. Soc. 21, 1121–1130 (2001)

    Google Scholar 

  21. A. Martucci, D. Busso, M. Guglielmi, L. Zbroniec, N. Koshizaki, M. Post, J. Sol-Gel Sci. Technol. 32, 243–246 (2004)

    CAS  Google Scholar 

  22. M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Micro Nano Lett. 7, 831–834 (2012)

    Google Scholar 

  23. M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Micro Nano Lett. 7, 1300–1304 (2012)

    CAS  Google Scholar 

  24. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 625, 26–33 (2015)

    CAS  Google Scholar 

  25. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 617, 93–101 (2014)

    CAS  Google Scholar 

  26. A. Sobhani, M. Salavati-Niasari, Superlattices Microstruct. 65, 79–90 (2014)

    CAS  Google Scholar 

  27. M. Mahdiani, A. Sobhani, M. Salavati-Niasari, Sep. Purif. Technol. 185, 140–148 (2017)

    CAS  Google Scholar 

  28. A. Sobhani, M. Salavati-Niasari, J. Mol. Liq. 220, 334–338 (2016)

    CAS  Google Scholar 

  29. A. Sobhani, M. Salavati-Niasari, Mater. Res. Bull. 53, 7–14 (2014)

    CAS  Google Scholar 

  30. N. Morimoto, M. Tokonami, M. Watanabe, K. Koto, Am. Mineral 59, 475–485 (1974)

    CAS  Google Scholar 

  31. J. Yatabe, T. Sugizaki, T. Ikawa, T. Kageyama, J. Ceram. Soc. Jpn. 105, 188–191 (1997)

    CAS  Google Scholar 

  32. F. Ansari, A. Sobhani, M. Salavati-Niasari, J. Magn. Magn. Mater. 410, 27–33 (2014)

    Google Scholar 

  33. F. Ansari, A. Sobhani, M. Salavati-Niasari, RSC Adv. 4, 63946–63950 (2014)

    CAS  Google Scholar 

  34. P. Guo, Ch. Wang, RSC Adv. 5, 70661–70667 (2015)

    CAS  Google Scholar 

  35. M. Stoia, M. Stefanescu, T. Dippong, O. Stefanescu, P. Barvinschi, J. Sol-Gel Sci. Technol. 54, 49–56 (2010)

    CAS  Google Scholar 

  36. B.C. Dunn, P. Cole, D. Covington, M.C. Webster, R.J. Pugmire, R.D. Ernst, E.M. Eyring, N. Shah, G.P. Huffman, Appl. Catal. A. 278, 233–238 (2005)

    CAS  Google Scholar 

  37. K. Okabe, X. Li, T. Matsuzaki, H. Arakawa, K. Fujimoto, J. Sol–Gel Sci. Technol. 19, 519–523 (2000)

    CAS  Google Scholar 

  38. K. Okabe, X. Li, M. Wei, H. Arakawa, Catal. Today 89, 431–438 (2004)

    CAS  Google Scholar 

  39. B. Ernst, S. Libs, P. Chaumette, A. Kiennemann, Appl. Catal. A 186, 145–168 (1999)

    CAS  Google Scholar 

  40. M. Salavati-Niasari, A. Sobhani, Opt. Mater. 35, 904–909 (2013)

    CAS  Google Scholar 

  41. J.R. Ota, P. Roy, S.K. Srivastava, R. Popovitz-Biro, R. Tenne, Nanotechnology 17, 1700–1705 (2006)

    CAS  Google Scholar 

  42. C. Kulsi, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, D. Banerjee, Appl. Surf. Sci. 392, 540–548 (2017)

    CAS  Google Scholar 

  43. Y. Jiang, M. Hao, L. Jiang, F. Liu, Y. Liu, RSC Adv. 6, 47840–47843 (2016)

    CAS  Google Scholar 

  44. S. Bayat, D. Ghanbari, M. Salavati-Niasari, J. Mol. Liq. 220, 223–231 (2016)

    CAS  Google Scholar 

  45. S. Nomura, R. Santoro, J. Fang, R. Newnham, J. Phys. Chem. Solids 25, 901–905 (1964)

    CAS  Google Scholar 

  46. J.M. Mays, Phys. Rev. 131, 38–53 (1963)

    CAS  Google Scholar 

  47. W. Lottermoser, H. Fuess, Phys. Stat. Sol. 109, 589–595 (1988)

    CAS  Google Scholar 

  48. S. Bayat, A. Sobhani, M. Salavati-Niasari, Mater. Res. Bull. 88, 248–257 (2017)

    CAS  Google Scholar 

  49. P. Saravanapavan, L.L. Hench, J. Non-Cryst. Solids 318, 1–13 (2003)

    CAS  Google Scholar 

  50. B. Pejova, A. Isahi, M. Najdoski, I. Grozdanov, Mater. Res. Bull. 36, 161–170 (2001)

    CAS  Google Scholar 

  51. C. Lin, J. Solid State Chem. 157, 102–109 (2001)

    CAS  Google Scholar 

  52. A. Sobhani, M. Salavati-Niasari, J. Nanostruct. 7, 141–146 (2017)

    CAS  Google Scholar 

  53. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, J. Nanostruct. 6, 80–85 (2016)

    CAS  Google Scholar 

  54. W. Zhezhe, H. Shang, R. ZHao, X. Xing, Y. Wang, J. Nanostruct. 7, 103–110 (2017)

    Google Scholar 

  55. X. Liu, Y. Yang, Y. Han, L. Wang, G. Chen, X. Xiao, Y. Wang, J. Nanostruct. 7, 82–87 (2017)

    CAS  Google Scholar 

  56. A. Silva, S. Martinez-Gallegos, G. Rosano-Ortega, P. Schabes-Retchkiman, C. Vega-Lebrun, V. Albiter, J. Nanostruct. 7, 1–12 (2017)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. 159271/855990.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azam Sobhani or Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, S., Sobhani, A. & Salavati-Niasari, M. Co2SiO4 nanostructures/nanocomposites: synthesis and investigations of optical, magnetic, photocatalytic, thermal stability and flame retardant properties. J Mater Sci: Mater Electron 29, 7077–7089 (2018). https://doi.org/10.1007/s10854-018-8695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8695-y

Navigation