Effect of strain in PbSe/ZnPc stacked layers prepared by thermal evaporation method

  • R. Rathes Kannan
  • A. Mohan
  • P. Issac Nelson
  • V. Arivazhagan
  • B. Vidhya
  • S. Rajesh


The article investigates the structural and optical properties of ZnPc/PbSe hybrid multilayer (HML) structure deposited by using thermal evaporation technique. The X-ray diffraction pattern reveals the formation of ZnPc–PbSe composite and strain induced quantum size effect. Scanning electron microscope image shows the spherical grains for as-deposited film and nanorod like structure for the annealed film. The rods are oriented along one direction and stacking axis changes with the function of annealing temperature. The optical spectra show strong absorption in UV–Visible region and the optical absorption edge was red shifted for annealed samples. The luminescence properties were enhanced with broad emission in the range of 375–400 nm in HMLs. The optical band gap values are calculated and it varies from 3.2 to 3.04 eV with the function of annealing temperature and the band gap splitting was observed for a higher temperature of annealed samples. Strain-induced effect on ZnPc/PbSe HML has been reported using Raman spectra.


  1. 1.
    A. Chen, K. Zhu, Computer simulation of a-Si/c-Si heterojunction solar cell with high conversion efficiency. Sol. Energy 86, 393–397 (2012)CrossRefGoogle Scholar
  2. 2.
    M.M. Parvathi, V. Arivazhagan, S. Rajesh, Quantum size effect on the layer by layer assembly of PbTe–InSe multilayer nanocomposite structures. J. Alloys Compd. 646, 96–100 (2015)CrossRefGoogle Scholar
  3. 3.
    K. Ding, U. Aeberhard, O. Astakhov, F. Köhler, W. Beyer, F. Finger, R. Carius, U. Rau, Silicon quantum dot formation in SiC/SiOx hetero-superlattice. Energy Procedia 10, 249–254 (2011)CrossRefGoogle Scholar
  4. 4.
    E. Cánovas, P. Moll, S.A. Jensen, Y. Gao, A.J. Houtepen, L.D.A. Siebbeles, S. Kinge, M. Bonn, Size-dependent electron transfer from PbSe quantum dots to SnO2 monitored by picosecond terahertz spectroscopy. Nano Lett. 11, 5234–5239 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Masumoto, H. Takagi, H. Umino, E. Suzumura, Fast electron transfer from PbSe quantum dots to TiO2. Appl. Phys. Lett. 100, 252106 (2012)CrossRefGoogle Scholar
  6. 6.
    W.A. Tisdale, K.J. Williams, B.A. Timp, D.J. Norris, E.S. Aydil, X.-Y. Zhu, Hot-electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010)CrossRefGoogle Scholar
  7. 7.
    V. Arivazhagan, M. Manonmani Parvathi, S. Rajesh, R. Sæterli, R. Holmestad, Quantum confinement in two dimensional layers of PbSe/ZnSe multiple quantum well structures. Appl. Phys. Lett. 102, 242110 (2013)CrossRefGoogle Scholar
  8. 8.
    R.D. Schaller, M. Sykora, J.M. Pietryga, V.I. Klimov, Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 6, 424–429 (2006)CrossRefGoogle Scholar
  9. 9.
    V. Arivazhagan, M. Manonmani Parvathi, S. Rajesh, R. Sæterli, R. Holmestad, Quantum confinement of PbSe nanocrystals embedded in a spacer ZnSe matrix for solar cell applications. Sol. Energy 106, 38–42 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Manonmani Parvathi, V. Arivazhagan, S. Rajesh, Quantum size effect on cubic PbTe nanocrystals embedded in amorphous InSe thin film matrix. Superlattices Microstruct. 75, 901–907 (2014)CrossRefGoogle Scholar
  11. 11.
    S.A. Jesuraj, S. Devadason, M. Melvin David Kumar, Effect of quantum confinement in CdSe/Se multilayer thin films prepared by PVD technique. Mater. Sci. Semicond. Process. 64, 109–114 (2017)CrossRefGoogle Scholar
  12. 12.
    V. Arivazhagan, M.M. Parvathi, S. Rajesh, Complementary NIR absorption of ZnSe induced by multiple PbSe submonolayers by vacuum deposition technique. Vacuum 99, 95–98 (2014)CrossRefGoogle Scholar
  13. 13.
    P.-L. Ong, I.A. Levitsky, Organic/IV, III-V semiconductor hybrid solar cells. Energies 3, 313–334 (2010)CrossRefGoogle Scholar
  14. 14.
    J.-L. Brédas, J.E. Norton, J. Cornil, V. Coropceanu, Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42, 1691–1699 (2009)CrossRefGoogle Scholar
  15. 15.
    H.M.G. Correia, H.M.C. Barbosa, L. Marques, M.M.D. Ramos, Understand the importance of molecular organization at polymer-polymer interfaces in excitonic solar cells. Thin Solid Films 560, 59–64 (2014)CrossRefGoogle Scholar
  16. 16.
    C. Schünemann, C. Elschner, A.A. Levin, M. Levichkova, K. Leo, M. Riede, Zinc phthalocyanine—influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films 519, 3939–3945 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Manonmani Parvathi, V. Arivazhagan, S. Rajesh, Impact of barrier thickness on the strain effect in ZnSe/ZnS multiple quantum well structure. Superlattices Microstruct. 59, 40–46 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Mohan, S. Rajesh, G. Srikesh, CuInSe2 formation through Cu2Se-In3Se2 multilayer structures prepared by thermal evaporation technique. Superlattices Microstruct. 93, 261–268 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Mohan, S. Rajesh, Impact of annealing on the investigation of In3Se2/Cu2Se/In3Se2 sandwich structure prepared by thermal evaporation technique for solar cell applications. Superlattices Microstruct. 85, 638–645 (2015)CrossRefGoogle Scholar
  20. 20.
    V. Arivazhagan, M. Manonmani Parvathi, S. Rajesh, Study on the formation of PbSe nanoclusters at the interfaces of PbSe/ZnSe multiple quantum well structure. Physica E 53, 120–123 (2013)CrossRefGoogle Scholar
  21. 21.
    D. Roy, N.M. Das, P.S. Gupta, Effect of annealing on the growth dynamics of ZnPc LB thin film and its surface morphology. AIP Adv. 4, 77126 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Roy, N.M. Das, N. Shakti, P.S. Gupta, Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing. RSC Adv. 4, 42514–42522 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Jia, W. Zhou, Y. Chen, J. Han, L. Wang, F. Li, Y. Wang, Highly efficient polymer solar cells based on a universal cathode interlayer composed of metallophthalocyanine derivative with good film-forming property. J. Mater. Chem. A 3, 4547–4554 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Senthilarasu, S. Velumani, R. Sathyamoorthy, G. Canizal, P.J. Sebastian, J.A. Chavez, R. Perez, A. Subbarayan, J.A. Ascencio, Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Appl. Phys. A 77, 383–389 (2003)CrossRefGoogle Scholar
  25. 25.
    R. Sathyamoorthy, S. Senthilarasu, Structural orientations and optical bandgap of zinc phthalocyanine (ZnPc) thin films. J. Electrochem. Soc. 154, H1 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Manonmani Parvathi, V. Arivazhagan, S. Rajesh, Structural and optical properties of ZnSe thin films stacked with PbSe submonolayers. Appl. Phys. A 116, 1773–1778 (2014)CrossRefGoogle Scholar
  27. 27.
    W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, P. Piszczek, Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra. J. Optoelectron. Adv. Mater. 11, 264–269 (2009)Google Scholar
  28. 28.
    M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, A. Bratkowski, Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate. J. Mol. Struct. 830, 14–20 (2007)CrossRefGoogle Scholar
  29. 29.
    D. Roy, N.M. Das, M. Gupta, P.S. Gupta, Study of polymorphism of ZnPc LB thin film on annealing. AIP Conf. Proc. 1731, 30007 (2016)CrossRefGoogle Scholar
  30. 30.
    T. Basova, B. Kolesov, Raman polarization studies of the orientation of molecular thin films. Thin Solid Films 325, 140–144 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. Rathes Kannan
    • 1
  • A. Mohan
    • 4
  • P. Issac Nelson
    • 1
  • V. Arivazhagan
    • 3
  • B. Vidhya
    • 2
  • S. Rajesh
    • 2
  1. 1.Thin Film Laboratory, Department of ScienceKarunya Institute of Technology and Sciences CoimbatoreIndia
  2. 2.Department of Nanoscience and TechnologyKarunya Institute of Technology and Sciences CoimbatoreIndia
  3. 3.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  4. 4.Department of PhysicsSt. Joseph’s College (Autonomous)BangaloreIndia

Personalised recommendations