Advertisement

Microwave synthesis of three dimensional N-doped graphene self-supporting networks coated with Zinc/Nickel oxide nanocrystals for supercapacitor electrode applications

  • Mingmei Zhang
  • Tianjiao Ma
  • Ying Wang
  • Denghui Pan
  • Jimin Xie
Article
  • 155 Downloads

Abstract

A hybrid of zinc/nickel oxide nanoparticles supported on nitrogen doped three-dimensional graphene networks (ZnO/NiO/3DNG) have been designed through a simple microwave process assisted tube furnace thermal treatment. Well dispersed coupled zinc/nickel oxides nanoparticles with sizes of 10–20 nm are homogeneously anchored on 3DNG hybrid structure. As electrode active material of supercapacitors, the ZnO/NiO/3DNG nanocomposites exhibits an ultrahigh specific capacitance of 1839.4 F g−1 at a current density of l A g−1 in 6.0 M KOH solution, the EIS analysis of the electrode after 6000th cycle at 10 A g−1 remained about 93%, displayed that the fitting values of inner resistance and faradic charge transfer resistance of the electrode are low and electrode activity don’t change too much after cycling. Furthermore, the ZnO/NiO/3DNG composites exhibits the maximum energy density of 35.32 Wh kg−1 with the power density 139.72 W kg−1 at high current density of 10 A g−1 in the two-electrode system. The outstanding performance originates from the flexible three dimensional N-doped unique structural, which play important roles in stabilizing ZnO and NiO.

Notes

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2017M621656), Research Foundation for Talented Scholars of Jiangsu University (14JDG187) and Jiangsu Planned Projects for Postdoctoral Research Funds (1701170C).

References

  1. 1.
    C.S. Zhang, C.S. Wang, D.Z. Zhang, S.G. Dai, Y. Xi, W.N. Xu, J. Chen, N.N. Bai, Y.L. Yang, Based on the stable tunnel structure of C@K2Ti6O13 hybrid compositions for supercapacitor. Electrochim. Acta. 252, 498 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Yu, Y. Cheng, X. Zeng, L. Wang, X. Tong, H. Lu, H. Yang, Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew. Chem. Int. Ed. 55, 6762 (2016)CrossRefGoogle Scholar
  3. 3.
    R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Non-aqueous route spray pyrolyzed Ru: Co3O4 thin electrodes for supercapacitor application. Appl. Surf. Sci. 349, 887 (2015)CrossRefGoogle Scholar
  4. 4.
    R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Electrochemical characterization of Mn: Co3O4 thin films prepared by spray pyrolysis via aqueous route. Curr. Appl. Phys. 14, 1582 (2014)CrossRefGoogle Scholar
  5. 5.
    Q. Cao, C. Wang, J. Xu, B. Fu, H. Ma, Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor. Electrochim. Acta. 157, 359 (2015)CrossRefGoogle Scholar
  6. 6.
    J.J. Park, J.H. Park, O.O. Park, J.H. Yang, Highly porous graphenated graphite felt electrodes with catalytic defects for high-performance vanadium redox flow batteries produced via NiO/Ni redox reactions. Carbon 110, 17 (2016)CrossRefGoogle Scholar
  7. 7.
    G. Qu, F. Jia, H. Wang, F. Cao, L. Li, C. Qing, D.M. Sun, B.X. Wang, Y.W. Tang, J.B. Wang, Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays. ACS Appl. Mate.r Interfaces 8, 20822 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Hakamada, T. Abe, M. Mabuchi, Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors. J. Power Sources 325, 670 (2016)CrossRefGoogle Scholar
  9. 9.
    C.S. Wang, Y. Xi, M.J. Wang, C.S. Zhang, X. Wang, Q. Yang, W.L. Li, C.G. Hu, D.Z. Zhang, Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy 28, 115 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Li, J. Wen, M. Mo, H. Long, N. Wang, J.B. Wang, G.J. Fang, Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 256, 206 (2014)CrossRefGoogle Scholar
  11. 11.
    C. Xing, X. Chu, B. Ren, J. Ge, A. Qusti, A. Asiri, A.A. Youbi, P. Sun, Ni3S2 Coated ZnO array for high-performance supercapacitors. J. Power Sources 245, 463 (2014)CrossRefGoogle Scholar
  12. 12.
    R. Li, L. Wang, L. Zheng, N. Ou, TongX, ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. J. Mater. Chem. 21, 4217 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Zheng, Q. Yan, H. Sun, M. Bai, J. Zhang, W. Shen, J. Liang, Y. Zhang, Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 7, 2480 (2015)CrossRefGoogle Scholar
  14. 14.
    Z.H. Pu, Q. Liu, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, P. Sun, Fabrication of Ni(OH)2 coated ZnO array for high-rate pseudoca-pacitive energy storage. Electrochim. Acta. 109, 252 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Zhou, L. Ma, MnO2/ZnO porous film: Electrochemical synthesis and enhanced supercapacitor performances. Thin Solid Films 597, 44 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Scardamaglia, C. Struzzi, F.J.A. Rebollo, P.D. Marco, P.R. Mudimela, J.F. Colomer, M. Amati, L. Gregoratti, L. Petaccia, R. Snyders, C. Bittencourt, Tuning electronic properties of carbon nanotubes by nitrogen grafting: chemistry and chemical stability. Carbon 83, 118 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Selvakumar, A. Alsalme, A. Alswieleh, R. Jayavel, Freestanding flexible nitrogen doped-reduced graphene oxide film as an efficient electrode material for solid-state supercapacitors. J. Alloy. Compd. 723, 995 (2017)CrossRefGoogle Scholar
  18. 18.
    N. Iqbal, X. Wang, A. Ahmed Babar, J. Yu, B. Ding, Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes. J. Colloid Interface Sci. 476, 87 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Li, H. Pan, M. Zhang, M. Xie, X. Yan, Ultrafine Co3O4 embedded in nitrogen-doped graphene with synergistic effect and high stability for supercapacitors. RSC Adv. 6, 48357 (2016)CrossRefGoogle Scholar
  20. 20.
    D. Liu, L. Zhang, B. Zhang, L. Shi, Z. Tan, H. Huang, Nitrogen-doped reduced graphene oxide-Ni(OH)2-built 3D flower composite with easy hydrothermal process and excellent electrochemical performance. Electrochim. Acta. 138, 69 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Mao, C. Guan, L. Huang, Q. Ke, Y. Zhang, J. Wang, 3D Graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. Electrochim. Acta. 196, 653 (2016)CrossRefGoogle Scholar
  22. 22.
    N. Yan, C. Cao, H. Tian, C. Jin, K. Ke, Z. Yang, Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4 with enhanced electrocatalytic activities for oxygen reduction and evolution reactions. Carbon 99, 195 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Chao, H. Xia, C.R. Zhu, J. Wang, L. Liu, Y. Lin, X. Shen, J. Fan, Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance. Nanoscale 6, 5691 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Xia, P. Tu, Q. Zhang, L. Wang, D. Gu, B. Zhao, J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano. 6, 5531 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Huang, B. Yang, R. Vajtai, X. Wang, P.M. Ajayan, Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 26, 5160 (2014)CrossRefGoogle Scholar
  26. 26.
    J. He, J. Li, H. Ma, F. Han, H. Zhang, C. Yu, N. Xiao, S. Qiu, ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J. Power Sources 340, 183 (2017)CrossRefGoogle Scholar
  27. 27.
    S.G. Dai, W.N. Xu, Y. Xin, M.J. Wang, X. Gu, D.L. Guo, C.G. Hu, Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor. Nano Energy 19, 363 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Zhang, H. Pan, Y. Li, X. Yan, C. Meng, M. Xie, Formation cobalt silicide nanoparticles on graphene with synergistic effect and high stability for ethanol oxidation. RSC Adv. 6, 30293 (2016)CrossRefGoogle Scholar
  29. 29.
    L. Chang, Y. Gao, R. Wang, P. Wu, F. Xu, X. Wang, M. Guo, K. Jiang, Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta. 157, 290 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Zhang, Y. Li, H. Pan, X. Yan, C. Meng, M. Xie, Nickel core–palladium shell nanoparticles grown on nitrogen-doped graphene with enhanced electrocatalytic performance for ethanol oxidation. RSC Adv. 6, 33231 (2016)CrossRefGoogle Scholar
  31. 31.
    R.Y. Sato-Berru, A. Vázquez-Olmos, A.L. Fernández-Osorio, S. Sotres-Martínez, Micro-Raman investigation of transition-metal-doped ZnO nanoparticles. J. Raman Spectrosc. 38, 1073 (2007)CrossRefGoogle Scholar
  32. 32.
    K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 97, 124313 (2005)CrossRefGoogle Scholar
  33. 33.
    G. Li, K. Wang, F. Qiu, M. Pan, A. Hu, 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J. Alloy. Compd. 620, 31 (2015)CrossRefGoogle Scholar
  34. 34.
    G. Chen, T. Guan, J. Dong, X.C. Xiao, Y.D. Wang, Effect of calcination temperatures on the electrochemical performances of nickel oxide/reduction graphene oxide (NiO/RGO) composites synthesized by hydrothermal method. J. Phys. Chem. Solids. 98, 209 (2016)CrossRefGoogle Scholar
  35. 35.
    V.A. Fonoberov, A.A. Balandin, Interface and confined optical phonons in wurtzite nanocrystals. Phys. Rev. B 70, 233205 (2004)CrossRefGoogle Scholar
  36. 36.
    J. Yan, J. Fan, W. Sun, Q. Ning, T. Wei, Q. Zhang, F. Zhang, J. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22, 2632 (2012)CrossRefGoogle Scholar
  37. 37.
    C. Barchasz, F. Molton, C. Duboc, J.C. Leprêtre, S. Patoux, F. Alloin, Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84, 3973 (2012)CrossRefGoogle Scholar
  38. 38.
    H. Li, J. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao, H. Zhang, Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A 2, 6540 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Cao, Y. Li, B. Xu, X. Zhang, T. Ji, J. Zou, M. Yang, Y. Qin, MnMoO4 center dot 4H(2)O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. J. Mater. Chem. A 2, 20723 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mingmei Zhang
    • 1
  • Tianjiao Ma
    • 1
  • Ying Wang
    • 1
  • Denghui Pan
    • 1
  • Jimin Xie
    • 1
  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations