Surfactant free synthesis of Sr2CeO4 nanostructures and their application in removal of organic pollutions

Article
  • 9 Downloads

Abstract

In current work, surfactant free synthesis of Sr2CeO4 nanostructures by co-precipitation process were reported. This method require lower firing temperature (700 °C) compare to the previous reports (above 1000 °C). This study shows that by controlling the reaction conditions such as kind of precipitating agent, surfactant and calcination temperature, the Sr2CeO4 nanostructures with various morphologies were prepared. Up to now, luminescence properties of Sr2CeO4 structures received great attention, while we focused on the photocatalytic activity of Sr2CeO4 nanostructures. Results show that the Sr2CeO4 nanostructures have exhibited excellent photodegradation performance of Acid red 88 azo dye as water pollutants under UV light irradiation.

Notes

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. (159271/822990).

References

  1. 1.
    F. Ansari, F. Soofivand, M. Salavati-Niasari, Mater. Charact. 103, 11 (2015)CrossRefGoogle Scholar
  2. 2.
    E. Danielson, M. Devenney, D.M. Giaquinta, J.H. Golden, R.C. Haushalter, E.W. Mc Farland, D.M. Poojary, C.M. Reaves, W.H. Weinberg, X.D. Wu, Science 279, 837 (1998)CrossRefGoogle Scholar
  3. 3.
    L.V. Pieterson, S. Soverna, A. Meijering, J. Electrochem. Soc. 147, 4688 (2000)CrossRefGoogle Scholar
  4. 4.
    Y.D. Jiang, F. Zhang, C.J. Summers, Z.L. Wang, Appl. Phys. Lett. 74, 1677 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Gomes, A.M. Pires, O.A. Serra, Quim. Nova. 27, 706 (2004)CrossRefGoogle Scholar
  6. 6.
    C.H. Lu, C. Chen, J. Sol-Gel Sci. Technol. 43, 179 (2007)CrossRefGoogle Scholar
  7. 7.
    N. Perea, G.A. Hirata, Thin Solid Films. 497, 177 (2006)CrossRefGoogle Scholar
  8. 8.
    N. Perea, G.A. Hirata, Opt. Mater. 27, 1212 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Tang, H. Guo, Q. Qin, Solid State Commun. 121, 351 (2002)CrossRefGoogle Scholar
  10. 10.
    C.H. Park, C.H. Kim, C.H. Pyun, J.H. Choy, J. Lumin. 87–89, 1062 (2000)CrossRefGoogle Scholar
  11. 11.
    Y.E. Lee, D.P. Norton, J.D. Budai, P.D. Rack, M.D. Potter, Appl. Phys. Lett. 77(5), 678 (2000)CrossRefGoogle Scholar
  12. 12.
    O.A. Serra, V.P. Severino, P.S. Calefi, S.A. Cicillini, J. Alloys Compound. 323–324, 667 (2001)CrossRefGoogle Scholar
  13. 13.
    X. Yu, X.H. He, S.P. Yang, X. Yang, X. Xu, Mater. Lett. 58, 48 (2003)CrossRefGoogle Scholar
  14. 14.
    J. Gomes, A.M. Pires, O.A. Serra, Quim. Nova. 27, 5 (2004)CrossRefGoogle Scholar
  15. 15.
    Y.B. Khollam, S.B. Deshpande, P.K. Khanna, P.A. Joy, H.S. Potdar, Mater. Lett. 58(20), 2521 (2004)CrossRefGoogle Scholar
  16. 16.
    S.J. Chen, X.T. Chen, Z. Yu, J.M. Hong, Z. Xue, X.Z. You, Solid State Commun. 130(3–4), 48 (2004)Google Scholar
  17. 17.
    A. Nag, T.R.N. Kutty, J. Mater. Chem. 13, 370 (2003)CrossRefGoogle Scholar
  18. 18.
    T. Hirai, Y. Kawamura, J. Phys. Chem. B. 108, 12763 (2004)CrossRefGoogle Scholar
  19. 19.
    T. Hirai, Y. Kawamura, J. Phys. Chem. B. 109, 5569 (2005)CrossRefGoogle Scholar
  20. 20.
    H. Kim, Y.T. Kim, H.K. Chae, Y. Dong, H. Yun, J. Sol–Gel Sci. Technol. 33, 75 (2005)CrossRefGoogle Scholar
  21. 21.
    D.S. Xing, J.X. Shi, M.L. Gong, Mater. Lett. 59, 948 (2005)CrossRefGoogle Scholar
  22. 22.
    F. Ansari, M. Bazarganipour, M. Salavati-Niasari, Mater. Sci. Semicond. Process. 43, 34 (2016)CrossRefGoogle Scholar
  23. 23.
    F. Ansari, M. Salavati-Niasari, Adv. Powder Technol. 27, 2025 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Valian, F. Beshkar, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 28, 14996 (2017)Google Scholar
  25. 25.
    C.L. Marchena, L. Lerici, S. Renzini, L. Pierella, L. Pizzio, Appl. Catal. B: Environ. 188, 23 (2016)CrossRefGoogle Scholar
  26. 26.
    S.A. Hassanzadeh-Tabrizi, M.M. Motlagh, S. Salahshour, Appl. Surf. Sci. 384, 237 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, J. Colloid Interface Sci. 344, 497 (2010)CrossRefGoogle Scholar
  28. 28.
    V.K. Gupta, S. Agarwal, T.A. Saleh, J. Hazard. Mater. 185, 17 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Zhang, X. Wang, J. Li, T. Wen, J. Xu, X. Wang, RSC Adv. 4, 63110 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Moshtaghi, S. Gholamrezaei, M. Salavati Niasari, P. Mehdizadeh, J. Mater. Sci.: Mater. Electron. 27, 414 (2016)Google Scholar
  31. 31.
    P.Z. Zambare, K.D. Girase, K.V.R. Murthy, O.H. Mahajan, Adv. Mater. Lett. 4(7), 577 (2013)CrossRefGoogle Scholar
  32. 32.
    L.A. Rocha, M.A. Schiavon, C.S. Nascimento Jr, L. Guimarães, M.S. Góes, A.M. Pires, C.O. Paiva-Santos, O.A. Serra, M.A. Cebim, M.R. Davolos, J.L. Ferrari, J. Alloys Compd. 608, 73 (2014)CrossRefGoogle Scholar
  33. 33.
    F. Namvar, F. Beshkar, M. Salavati-Niasari, S. Bagheri, J. Mater. Sci.: Mater. Electron. 28, 10313 (2017)Google Scholar
  34. 34.
    H. Najafian, F. Manteghi, F. Beshkar, M. Salavati-Niasari, Sep. Purif. Technol. 195, 30 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elites Club, Arak BranchIslamic Azad UniversityArakIslamic Republic of Iran
  2. 2.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations