Impedance, modulus and conductivity studies of Fe3+ doped BaTiO3 ceramics prepared by solid state method

  • N. Gouitaa
  • T. Lamcharfi
  • M. Bouayad
  • F. Abdi
  • N. Hadi


Fe3+ doped BaTiO3 (BaTi1 − xFexO3) with x = 0.0, 0.2, 0.4 and 0.6 of Fe3+ contents was synthesized using the solid–state reaction method. The powders were calcinated at 1100 °C and sintered at 1200 °C for 6 h. The evolution of structural properties of the synthesized Fe3+-doped BaTiO3 particles was analyzed. X-ray diffraction patterns spectra revealed that the crystal phase of the obtained particles was predominately tetragonal BaTiO3 at x = 0.2. While at 0.4 and 0.6 of Fe content the hexagonal phase was formed. The correlation between densification, microstructure, and electrical properties of BaTi1 − xFexO3 (BTF) ceramics prepared was studied. The Complex impedance and modulus Cole–Cole plots showed negative temperature coefficient of resistivity behavior of the BTF materials, positive temperature coefficient of resistivity behavior for pure BT and decrease in grain boundaries resistivity. The relaxation behavior in the test materials is found to be of non-Debye type.


  1. 1.
    F. Jona, G. Shirane, Ferroelectric Crystals. (Dover Publications, Mineola, 1993)Google Scholar
  2. 2.
    A. Rae, M. Chu, V. Ganine, Barium Titanate: Past, Present and Future, in Dielectric Ceramic Materials, ed. by K.M. Nair, A.S. Bhalla (The American Ceramic Society, Westerville, 1999)Google Scholar
  3. 3.
    X.K. Wei et al., Structure, electrical and magnetic property investigations on dense Fe-doped hexagonal BaTiO3. J. Appl. Phys. 110(11), 114112(2011)CrossRefGoogle Scholar
  4. 4.
    R. Maier, J.L. Cohn, Ferroelectric and ferrimagnetic iron-doped thin-film BaTiO3: Influence of iron on physical properties. J. Appl. Phys. 92(9), 5429–5436 (2002)CrossRefGoogle Scholar
  5. 5.
    G.M. Keith et al., Synthesis and characterisation of doped 6H-BaTiO3ceramics. J. Eur. Ceram. Soc. 24(6), 1721–1724 (2004)CrossRefGoogle Scholar
  6. 6.
    T.A. Vanderah, J.M. Loezos, R.S. Roth, Magnetic dielectric oxides: subsolidus phase relations in the BaO:Fe2O3:TiO2system. J. Solid State Chem. 121(1), 38–50 (1996)CrossRefGoogle Scholar
  7. 7.
    S.Y. Qiu et al., Phase evolution and room temperature ferroelectric and magnetic properties of Fe-doped BaTiO3ceramics. Trans Nonferrous Met. Soc. China. 20(10), 1911–1915 (2010)CrossRefGoogle Scholar
  8. 8.
    P.P. Khirade, S.D. Birajdar, A.V. Raut, K.M. Jadhav, Effect of Fe–substitution on phase transformation, optical, electrical and dielectrical properties of BaTiO3nanoceramics synthesized by sol-gel auto combustion method. Ceram. Int. 42, 12441 (2016)CrossRefGoogle Scholar
  9. 9.
    N.V. Dang, N.T. Dung, P.T. Phong, I.-J. Lee, Effect of Fe3+substitution on structural, optical and magnetic properties of barium titanate ceramics. Phys. B. 457, 103–107 (2015)CrossRefGoogle Scholar
  10. 10.
    L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, Singapore, 1990)Google Scholar
  11. 11.
    H. Khelifi, I. Zouari, A. Al-Hajry, N. Abdelmoula, D. Mezzane, H. Khemakhem, Ac conductivity and ferroelectric phase transition of Bi0.7(Ba0.8Sr0.2)0.3Fe0.7Ti0.3O3ceramic. Ceram. Int. 41, 12958–12966 (2015)CrossRefGoogle Scholar
  12. 12.
    A.K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. Aug. 16(8), 2037–2060 (1981)CrossRefGoogle Scholar
  13. 13.
    H. P.Ouyang, Z. Zhang, D. Xue, Z. Li, NTC characteristic of SnSb0.05O2–BaTi0.8Fe0.2O3 –dcomposite materials. J. Mater. Sci. 24(10), 3932–3939 (2013)Google Scholar
  14. 14.
    D. Xue, H. Zhang, Y. Li, Y. Liu, Z. Li, Electrical properties of hexagonal BaTi1xFexO3d(x = 0.1, 0.2, 0.3) ceramics with NTC effect. J. Mater. Sci. 23(7), 1306–1312 (2012)Google Scholar
  15. 15.
    D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)CrossRefGoogle Scholar
  16. 16.
    H.D. Li, C.D. Feng, P.H. Xiang, Electrical properties of La3+doped Na0.5Bi0.5)0.94Ba0.06TiO3ceramics. Jpn. J. Appl. Phys. 42, 7387–7391 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Mahesh Kumar, M.B. Suresh, S.V. Suryanarayana, Electrical and dielectric properties in double doped BaTiO3showing relaxor behavior. J. Appl. Phys. 86, 1634 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Gouitaa
    • 1
  • T. Lamcharfi
    • 1
  • M. Bouayad
    • 1
  • F. Abdi
    • 1
  • N. Hadi
    • 1
  1. 1.Signals, Systems and Components Laboratory, Electrical Engineering DepartmentUSMBAFezMorocco

Personalised recommendations