Thermodynamic and magnetic properties of Fe doped CaAl12O19 material prepared by combustion route and post-heat treatment

  • Vijay Singh
  • G. Sivaramaiah
  • N. Singh
  • J. L. Rao
  • Vikas Dubey
  • Pramod K. Singh


Fe-doped CaAl12O19 was prepared via a simple combustion route. The formation of the as-prepared and post-heated combustion products was confirmed using an XRD analysis. The EPR spectrum of this sample exhibited a number of resonance signals. The paramagnetic centers have been quantified at different g factors in the range of 19.3–1.14. These resonance signals are attributed to pairs of Fe3+ ions. The resonance signal at a g value of ~ 4.2 is attributed to the axial-symmetry tetrahedral site. The resonance signal at a g value of ~ 2.0 is attributed to the presence of Fe3+ ions in an axial-symmetry octahedral site. The EPR parameters of the post-heated CaAl12O19:Fe3+ sample at room temperature and 110 K were calculated and compared.


  1. 1.
    Z. Zhang, Y. Zhang, X. Li, J. Xu, Y. Huang, The relationships between crystal structure of alkaline earth metal hexagonal aluminate and 4f-5d transitions of Ce3+ and Tb3+ ions. J. Non-Cryst. Solids. 354, 1943–1947 (2008)CrossRefGoogle Scholar
  2. 2.
    D. Notzold, H. Wulff, S. Jilg, L. Kantz, L. Schwarz, Structure and optical properties under VUV excitation of Mn2+ doped alkaline earth aluminate phosphors. Phys. Status Solidi (a). 203, 930–940 (2006)CrossRefGoogle Scholar
  3. 3.
    Y.X. Pan, G.K. Liu, Influence of Mg2+ on luminescence efficiency and charge compensating mechanism in phosphor CaAl12O19:Mn4+. J. Lumin. 131, 465–468 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Costa, M.J. Ribeiro, W. Hajjaji, M.P. Seabra, J.A. Labrincha, M. Dondi, G. Cruciani, Ni-doped hibonite (CaAl12O19): a new turquoise blue ceramic pigment. J. Eur. Ceram. Soc. 29, 2671–2678 (2009)CrossRefGoogle Scholar
  5. 5.
    N. Singh, V. Singh, S. Watanabe, J.F.D. Chubaci, T.K.Gundu Rao, H. Gao, P. Mardina, Studies of defects and optical properties of CaAl12O19:Ho3+ phosphor. J. Alloys Compd. 663, 235–242 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Nagashima, T. Armbruster, T. Hainschwang, A temperature-dependent structure study of gem-qualityhibonite from Myanmar. Minerol. Magz. 74, 871–885 (2010)CrossRefGoogle Scholar
  7. 7.
    K. Kato, H. Saalfeld NeuesJahrbuch fur Mineralogie, Abhandlungen, Verfeinerung der kristallstruktur von CaO(Al2O3)6. Neues Jahrbuchfür Mineral, 109, 192–200 (1968)Google Scholar
  8. 8.
    S.K. Misra, S.I. Andronenko, A. Thurber, A. Punnoose, A. Nalepa, An X- and Q-band Fe3+ EPR study of nanoparticles of magnetic semiconductor Zn1 – xFexO. J. Magn. Magn. Mater. 363, 82–87 (2014)CrossRefGoogle Scholar
  9. 9.
    I. Nemec, R. Herchel, Z. Trávníček, The relationship between the strength of hydrogenbonding and spin crossover behaviour in a seriesof iron(III) Schiff base complexes. Dalton Trans. 44, 4474–4484 (2015)CrossRefGoogle Scholar
  10. 10.
    J.F. Letard, P. Guionneau, L. Goux-Capes, Towards Spin Crossover Applications. in Spin Crossover in Transition Metal compounds iii. Topics in Current Chemistry, vol. 235. (Springer, Berlin, 2004), p. 221–251Google Scholar
  11. 11.
    P. Gutlich, H.A. Goodwin, Spin Crossover-An Overall Perspective. in Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry, vol. 233. (Springer, Berlin, 2004), p. 1–47Google Scholar
  12. 12.
    Y. Xu, Y. Zhang, L. Wang, M. Shi, L. Liu, Y. Chen, Red emission enhancement for CaAl12O19:Cr3+ and CaAl12O19:Mn4+ phosphors. J. Mater. Sci.: Mater. Electron. 28, 12032–12038 (2017)Google Scholar
  13. 13.
    Z. Liu, M. Yuwen, J. Liu, C. Yu, T. Xuan, H. Li, Electrospinning, optical properties and white LED applications of one-dimensional CaAl12O19:Mn4+ nanofiber phosphors. Ceram. Int. 43, 5674–5679 (2017)CrossRefGoogle Scholar
  14. 14.
    E.A. Medina, J. Li, M.A. Subramanian, Colored oxides with hibonite structure II: structural and optical properties of CaAl12O19-type pigments with chromophores based on Fe, Mn, Cr and Cu, Prog. Solid State Chem. 4546, 9–29 (2017)CrossRefGoogle Scholar
  15. 15.
    W. Li, H. Zhang, S. Chen, Y. Liu, J. Zhuang, B. Lei, Preparation and properties of carbon dot-grafted CaAl12O19:Mn4+color-tunable hybrid phosphor. Adv. Optic. Mater. 4, 427–434 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Zheng, L. Li, M. Peng, A new red aluminate phosphor CaAl12O19 activated by Bi+ for white LEDs. Sci. Adv. Mater. 9, 485–489 (2017)CrossRefGoogle Scholar
  17. 17.
    V. Singh, S. Watanabe, T.K. Gundu Rao, N. Singh, A.K. Srivastava, P.K. Singh, H. Gao, P. Mardina, S.J. Dhoble, Photoluminescence and ESR identification of γ-ray irradiation induced defects responsible for thermoluminescence in Tb3+ activated hibonite (CaAl12O19) powder material. J. Mater. Electron. 37, 58–65 (2016)Google Scholar
  18. 18.
    Z.-Y. Yang, Studies of the EPR parameters and defect structure for tetrahedral Fe3+centers in zinc oxide. Phys. Status Solidi B. 246, 1919–1924 (2009)CrossRefGoogle Scholar
  19. 19.
    N.G. Romanov, D.O. Tolmachev, A.G. Badalyan, R.A. Babunts, P.G. Baranov, V.V. Dyakonov, Spin-dependent recombination of defects in bulk ZnO crystals, and ZnO nanoparticles as studied by optically detected magnetic resonance. Physica B: Cond. Mater. 404, 4783–4786 (2009)CrossRefGoogle Scholar
  20. 20.
    C. Fàbregaa, T. Andreua, A. Cabot, J.R. Morantea, Location and catalytic role of iron species in TiO2:fephotocatalysts: an EPR study. J. Photochem. Photobiol. A. 211, 170–175 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Wang, X.-Y. Kuang, D. Die, X.-M. Tan, X. Yang, EPR spectra and local lattice structure of Fe3+ impurity ions in ferroelectric LiNbO3. Chem. Phys. 330, 212–215 (2006)CrossRefGoogle Scholar
  22. 22.
    D. Dong, K. Xiao-Yu, G. Jian-Jun, Z. Kang-Wei, H. Xiao-Fen, EPR theoretical study of local lattice structure of Fe3+ in octahedral site in yttrium gallium. Physica B. 357, 380–385 (2005)CrossRefGoogle Scholar
  23. 23.
    R.S. Muralidhara, C.R. Kesavulu, J.L. Rao, R.V. Anavekar, R.P.S. Chakradhar, EPR and optical absorption studies of Fe3+ ions in sodium borophosphate glasses. J. Phys. Chem. Solids. 71, 1651–1655 (2010)CrossRefGoogle Scholar
  24. 24.
    W.-C. Zheng, S. Tang, X.-X. Wu, The effects of applied electric fields on the EPR spectra of Fe3+ ion in tetragonal SrTiO3 crystal. J. Magn. Magn. Mater. 283, 276–281 (2004)CrossRefGoogle Scholar
  25. 25.
    S.R. Jain, K.C. Adiga, V.R. Pal Verneker, A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame. 40, 71–79 (1981)CrossRefGoogle Scholar
  26. 26.
    B. Bleany, K.W.H. Stevens, Paramagnetic resonance. Rep. Prog. Phys. 16, 108–159 (1953)CrossRefGoogle Scholar
  27. 27.
    R.M. Golding, T. Singhasuwich, W.C. Tennant, An analysis of the conditions for an isotropic g-tensor in high-spin d5 systems. Mol. Phys. 34, 1343–1350 (1977)CrossRefGoogle Scholar
  28. 28.
    Y. Pan, M. Mao, J. Lin, Single-crystal EPR study of Fe3+ and VO2+ in prehnite from the jeffrey mine, asbestos, quebec, canad.mineral. 47, 933–945 (2009)Google Scholar
  29. 29.
    I. Ardelean, P. Pascuta, L.V. Giurgiu, EPR and magnetic susceptibility investigations of Fe2O3-B2O3-KCl Glasses. Int. J. Mod. Phys B. 17, 3049–3056 (2003)CrossRefGoogle Scholar
  30. 30.
    E. Burzo, I. Ardelean, I. Ursu, On the physical properties of 20Fe2C380 [3B2O3(1–x)PbOxGeO2] glasses. J. Mater. Sci. 15, 581–593 (1980)CrossRefGoogle Scholar
  31. 31.
    G. Sivaramaiah, J. Lin, Y. Pan, Electron paramagnetic resonance spectroscopy of Fe3+ ions in amethyst: thermodynamic potentials and magnetic susceptibility. Phys. Chem. Miner. 38, 159–167 (2011)CrossRefGoogle Scholar
  32. 32.
    G. Sivaramaiah, Y. Pan, Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol-radiation interactions. Phys. Chem. Miner. 39, 515–523 (2012)CrossRefGoogle Scholar
  33. 33.
    E. Boseman, D. Schoemaker, Resonance paramagnetique de l’ion Fe3+ dans la kaolinite. C. R. Acad. Sci., Paris 252, 1931–1933 (1961)Google Scholar
  34. 34.
    R. Kedzie, D. Lyons, M. Kestigian, Paramagnetic resonance of the Fe3+ Ion in CaWO4 (strong tetragonal crystal field). Phys. Rev. 138, A918–A924 (1965)CrossRefGoogle Scholar
  35. 35.
    V. Singh, G. Sivaramaiah, J.L. Rao, N. Singh, A.K. Srivastava, P.K. Singh, S.U. Pawar, H. Gao, P. Mardina, Combustion synthesized Fe-doped CeO2 powder-characterization, optical absorption and EPR spectroscopy. J. Mater. Sci.: Mater. Electron. 27, 4494–4500 (2016)Google Scholar
  36. 36.
    V. Singh, G. Sivaramaiah, J.L. Rao, N. Singh, M. Mohapatra, P.K. Singh, M.S. Pathak, S.J. Dhoble, Optical and EPR spectroscopic studies of deep red light emitting Fe-doped LiAl5O8 phosphor prepared via propellant combustion route. J. Electron. Mater. 46, 1525–1531 (2017)CrossRefGoogle Scholar
  37. 37.
    G.N. Hemanthkumar, G. Parthasarathy, R.P.S. Chakradhar, I. Omkaram, J.L. Rao, Y.C. Ratnakaram, Electron paramagnetic resonance studies on clinochlore from Longitudinal Valley area, northeastern Taiwan. Phys. Chem. Miner. 36, 447–453 (2009)CrossRefGoogle Scholar
  38. 38.
    J.M. Gaite, P. Ermacoff, J.P. Muller, Characterization and origin of two Fe3+ EPR spectra in kaolinite. Phys. Chem. Miner. 20, 242–247 (1993)CrossRefGoogle Scholar
  39. 39.
    J.M. Gaite, F. Muller, S. Jemai, Measurements of iron concentration in kaolinites considering disorder broadening of EPR lines. Phys. Chem. Minerals. 30, 366–372 (2003)CrossRefGoogle Scholar
  40. 40.
    J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. (Wiley, New York, 2007)Google Scholar
  41. 41.
    A.J. Dekker, Solid State Physics. (Department of Electrical Engineering, University of Groningen, Groningen, 2006)Google Scholar
  42. 42.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)Google Scholar
  43. 43.
    M. Borgheresi, F. Di Benedetto, A. Caneschi, G. Pratesi, M. Romanelli, L. Sorace, An EPR and SQUID magnetometry study of bornite. Phys. Chem. Miner. 34, 609–619 (2007)CrossRefGoogle Scholar
  44. 44.
    A.M. Hashem, H.M. Abuzeid, D. Mikhailova, H. Ehrenberg, A. Mauger, C.M. Julien, Structural and electrochemical properties of α-MnO2 doped with cobalt. J. Mater. Sci. 47, 2479–2485 (2012)CrossRefGoogle Scholar
  45. 45.
    R.R. Gubaidullin, S.B. Orlinskii, R.M. Rakhmatullin, S. Sen, Spectroscopic study of the effect of N and F codoping on the spatial distribution of Er3+ dopant ions in vitreous SiO2. J. Appl. Phys. 101, 063525–063529 (2007)CrossRefGoogle Scholar
  46. 46.
    S.J. Zhang, X.C. Wang, R. Sammynaiken, J.S. Tse, L.X. Yang, Z. Li, Q.Q. Liu, S. Desgreniers, Y. Yao, H.Z. Liu, C.Q. Jin, Effect of pressure on the iron arsenide superconductor LixFeAs (x = 0.8,1.01. Phys. Rev. B. 80(1), 014506–014506 (2009)CrossRefGoogle Scholar
  47. 47.
    C. Yamanaka, H. Kohno, M. Ikeya, Pulsed ESR measurements of oxygen-deficient type centers in various quartz. Appl. Radiat. Isot. 47, 1573–1577 (1996)CrossRefGoogle Scholar
  48. 48.
    M.A. Augustyniak-Jabłokow, V.Y. Yablokov, B. Bartlomiej Andrzejewski, W. Kempinski, S. Łos, K. Tadyszak, M.Y. Yablokov, V.A. Zhikarev, EPR and magnetism of the nanostructured natural carbonaceous material shungite. Phys. Chem. Miner. 37, 237–247 (2009)CrossRefGoogle Scholar
  49. 49.
    R.A. Weeks, R.H. Magruder, I.I.I.S. Andre, Review of some experiments in the 50-year saga of the E’ center and suggestions for future research. J. Non-Cryst. Solids. 354, 208–216 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vijay Singh
    • 1
  • G. Sivaramaiah
    • 2
  • N. Singh
    • 1
  • J. L. Rao
    • 3
  • Vikas Dubey
    • 4
  • Pramod K. Singh
    • 5
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulSouth Korea
  2. 2.Department of PhysicsGovernment College (M)KadapaIndia
  3. 3.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  4. 4.Department of PhysicsBhilai Institute of Technology, RaipurRaipurIndia
  5. 5.Materials Research LaboratorySharda UniversityGreater NoidaIndia

Personalised recommendations