Advertisement

Synthesis and characterization of n-type lightly doped mesoporous silicon nanowires through 1-MACE, influence of etching solution temperature

  • Somaye Ashrafabadi
  • Hosein Eshghi
Article
  • 85 Downloads

Abstract

In this paper, large-area arrays of vertical and orderly mesoporous silicon nanowires (SiNWs) were fabricated through one-step metal assisted chemical etching (1-MACE) process using lightly doped n-Si substrate. Etching occurred in HF/ AgNO3/ H2O2 solution. Field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) revealed that the whole surfaces of nanowires (NWs) are covered by dense mesoporous structures. Furthermore, the effect of solution etching temperature on morphological, optical and vibrational properties of SiNWs was investigated. FESEM images showed that the lengths of NWs are increased by increasing etching temperature, but the diameter changes are slight. Selected area electron diffraction (SAED) patterns indicate that the SiNWs formed at room temperature (RT) have single crystal structure, while those prepared at higher temperatures have polycrystal structure. In addition, the average reflectance is significantly low, i.e. less than 0.1% for SiNWs, in the wavelength range of 400–1100 nm. Also, a visible photoluminescence (PL) was observed in the samples, which is attributed to the silicon nano crystallites (SiNCs) decorated on the wall of NWs. The size of SiNCs is calculated through a frequency shift in the Raman spectrum. The optically active mesoporous SiNWs open new opportunities for nanoscale optoelectronic devices.

References

  1. 1.
    M. Lajvardi, H. Eshghi, M. Ghazi, M. Izadifard, A. Goodarzi, Mater. Sci. Semicond. Process. 40, 556–563 (2015)CrossRefGoogle Scholar
  2. 2.
    A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang, Nano Lett. 9(10), 3550–3554 (2009)CrossRefGoogle Scholar
  3. 3.
    F. Bai, M. Li, D. Song, H. Yu, B. Jiang, Y. Li, J. Solid State Chem. 196, 596–600 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Science. 313(5790), 1100–1104 (2006)CrossRefGoogle Scholar
  5. 5.
    W.-K. To, C.-H. Tsang, H.-H. Li, Z. Huang, Nano Lett. 11(12), 5252–5258 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, Nano Lett. 9(12), 4539–4543 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Qu, H. Zhou, X. Duan, Nanoscale. 3(10), 4060–4068 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Kumar, S.K. Srivastava, P. Singh, K. Sood, V. Singh, N. Dilawar, M. Husain, J. Nanopart. Res. 12(6), 2267–2276 (2010)CrossRefGoogle Scholar
  9. 9.
    Z. Huang, J. Liu, JSM Nanotechnol Nanomed. 3(1), 1035–1031 (2015)Google Scholar
  10. 10.
    B. Miao, J. Zhang, X. Ding, D. Wu, Y. Wu, W. Lu, J. Li, J. Micromech. Microeng. 27(5), 055019 (2017)CrossRefGoogle Scholar
  11. 11.
    Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, Adv. Mater. 23(2), 285–308 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Niauzorau, K. Girel, A. Sherstnyov, E. Chubenko, H. Bandarenka, V. Bondarenko, Phys. Status solidi. 13(4), 146–150 (2016)CrossRefGoogle Scholar
  13. 13.
    W.M. Shaoyuan, Li, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu, F. Wei, Nanoscale Res. Lett. 9 (2014)Google Scholar
  14. 14.
    C. Chiappini, X. Liu, J.R. Fakhoury, M. Ferrari, Adv. Funct. Mater. 20(14), 2231–2239 (2010)CrossRefGoogle Scholar
  15. 15.
    G. Oskam, J. Long, A. Natarajan, P. Searson, J. Phys. D. 31(16), 1998 (1927)Google Scholar
  16. 16.
    H. Chen, R. Zou, H. Chen, N. Wang, Y. Sun, Q. Tian, J. Wu, Z. Chen, J. Hu, J. Mater. Chem. 21(3), 801–805 (2011)CrossRefGoogle Scholar
  17. 17.
    C.Y. Chen, C.S. Wu, C.J. Chou, T.J. Yen, Adv. Mater. 20(20), 3811–3815 (2008)CrossRefGoogle Scholar
  18. 18.
    R. Ghosh, P. Giri, K. Imakita, M. Fujii, Nanotechnology. 25(4), 045703 (2014)CrossRefGoogle Scholar
  19. 19.
    K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, J. Zhu, Adv. Funct. Mater. 16(3), 387–394 (2006)CrossRefGoogle Scholar
  20. 20.
    M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, J. Sci. 4(8), 2863–2869 (2011)Google Scholar
  21. 21.
    H.-C. Chang, K.-Y. Lai, Y.-A. Dai, H.-H. Wang, C.-A. Lin, J.-H. He, Energy Environ. Sci. 4(8), 2863–2869 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Piscanec, M. Cantoro, A. Ferrari, J. Zapien, Y. Lifshitz, S. Lee, S. Hofmann, J. Robertson, Phys. Rev. B. 68(24), 241312 (2003)CrossRefGoogle Scholar
  23. 23.
    C.M. Hessel, J. Wei, D. Reid, H. Fujii, M.C. Downer, B.A. Korgel, J. Phys. Chem. Lett. 3(9), 1089–1093 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Najar, A. Slimane, M.N. Hedhili, D. Anjum, R. Sougrat, T. Ng, B. Ooi, J. Appl. Phys. 112(3), 033502 (2012)CrossRefGoogle Scholar
  25. 25.
    V.A. Sivakov, F. Voigt, A. Berger, G. Bauer, S.H. Christiansen, Phys. Rev. B. 82(12), 125446 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsShahrood University of TechnologyShahroodIran

Personalised recommendations