Skip to main content
Log in

Synthesis and characterization of n-type lightly doped mesoporous silicon nanowires through 1-MACE, influence of etching solution temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, large-area arrays of vertical and orderly mesoporous silicon nanowires (SiNWs) were fabricated through one-step metal assisted chemical etching (1-MACE) process using lightly doped n-Si substrate. Etching occurred in HF/ AgNO3/ H2O2 solution. Field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) revealed that the whole surfaces of nanowires (NWs) are covered by dense mesoporous structures. Furthermore, the effect of solution etching temperature on morphological, optical and vibrational properties of SiNWs was investigated. FESEM images showed that the lengths of NWs are increased by increasing etching temperature, but the diameter changes are slight. Selected area electron diffraction (SAED) patterns indicate that the SiNWs formed at room temperature (RT) have single crystal structure, while those prepared at higher temperatures have polycrystal structure. In addition, the average reflectance is significantly low, i.e. less than 0.1% for SiNWs, in the wavelength range of 400–1100 nm. Also, a visible photoluminescence (PL) was observed in the samples, which is attributed to the silicon nano crystallites (SiNCs) decorated on the wall of NWs. The size of SiNCs is calculated through a frequency shift in the Raman spectrum. The optically active mesoporous SiNWs open new opportunities for nanoscale optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Lajvardi, H. Eshghi, M. Ghazi, M. Izadifard, A. Goodarzi, Mater. Sci. Semicond. Process. 40, 556–563 (2015)

    Article  Google Scholar 

  2. A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang, Nano Lett. 9(10), 3550–3554 (2009)

    Article  Google Scholar 

  3. F. Bai, M. Li, D. Song, H. Yu, B. Jiang, Y. Li, J. Solid State Chem. 196, 596–600 (2012)

    Article  Google Scholar 

  4. F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Science. 313(5790), 1100–1104 (2006)

    Article  Google Scholar 

  5. W.-K. To, C.-H. Tsang, H.-H. Li, Z. Huang, Nano Lett. 11(12), 5252–5258 (2011)

    Article  Google Scholar 

  6. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, Nano Lett. 9(12), 4539–4543 (2009)

    Article  Google Scholar 

  7. Y. Qu, H. Zhou, X. Duan, Nanoscale. 3(10), 4060–4068 (2011)

    Article  Google Scholar 

  8. D. Kumar, S.K. Srivastava, P. Singh, K. Sood, V. Singh, N. Dilawar, M. Husain, J. Nanopart. Res. 12(6), 2267–2276 (2010)

    Article  Google Scholar 

  9. Z. Huang, J. Liu, JSM Nanotechnol Nanomed. 3(1), 1035–1031 (2015)

    Google Scholar 

  10. B. Miao, J. Zhang, X. Ding, D. Wu, Y. Wu, W. Lu, J. Li, J. Micromech. Microeng. 27(5), 055019 (2017)

    Article  Google Scholar 

  11. Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, Adv. Mater. 23(2), 285–308 (2011)

    Article  Google Scholar 

  12. S. Niauzorau, K. Girel, A. Sherstnyov, E. Chubenko, H. Bandarenka, V. Bondarenko, Phys. Status solidi. 13(4), 146–150 (2016)

    Article  Google Scholar 

  13. W.M. Shaoyuan, Li, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu, F. Wei, Nanoscale Res. Lett. 9 (2014)

  14. C. Chiappini, X. Liu, J.R. Fakhoury, M. Ferrari, Adv. Funct. Mater. 20(14), 2231–2239 (2010)

    Article  Google Scholar 

  15. G. Oskam, J. Long, A. Natarajan, P. Searson, J. Phys. D. 31(16), 1998 (1927)

    Google Scholar 

  16. H. Chen, R. Zou, H. Chen, N. Wang, Y. Sun, Q. Tian, J. Wu, Z. Chen, J. Hu, J. Mater. Chem. 21(3), 801–805 (2011)

    Article  Google Scholar 

  17. C.Y. Chen, C.S. Wu, C.J. Chou, T.J. Yen, Adv. Mater. 20(20), 3811–3815 (2008)

    Article  Google Scholar 

  18. R. Ghosh, P. Giri, K. Imakita, M. Fujii, Nanotechnology. 25(4), 045703 (2014)

    Article  Google Scholar 

  19. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, J. Zhu, Adv. Funct. Mater. 16(3), 387–394 (2006)

    Article  Google Scholar 

  20. M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, J. Sci. 4(8), 2863–2869 (2011)

    Google Scholar 

  21. H.-C. Chang, K.-Y. Lai, Y.-A. Dai, H.-H. Wang, C.-A. Lin, J.-H. He, Energy Environ. Sci. 4(8), 2863–2869 (2011)

    Article  Google Scholar 

  22. S. Piscanec, M. Cantoro, A. Ferrari, J. Zapien, Y. Lifshitz, S. Lee, S. Hofmann, J. Robertson, Phys. Rev. B. 68(24), 241312 (2003)

    Article  Google Scholar 

  23. C.M. Hessel, J. Wei, D. Reid, H. Fujii, M.C. Downer, B.A. Korgel, J. Phys. Chem. Lett. 3(9), 1089–1093 (2012)

    Article  Google Scholar 

  24. A. Najar, A. Slimane, M.N. Hedhili, D. Anjum, R. Sougrat, T. Ng, B. Ooi, J. Appl. Phys. 112(3), 033502 (2012)

    Article  Google Scholar 

  25. V.A. Sivakov, F. Voigt, A. Berger, G. Bauer, S.H. Christiansen, Phys. Rev. B. 82(12), 125446 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Eshghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafabadi, S., Eshghi, H. Synthesis and characterization of n-type lightly doped mesoporous silicon nanowires through 1-MACE, influence of etching solution temperature. J Mater Sci: Mater Electron 29, 6470–6476 (2018). https://doi.org/10.1007/s10854-018-8628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8628-9

Navigation