Influence of iron doping on the photocatalytic activity of nanocrystalline TiO2 particles fabricated by ultrasound method for enhanced degradation of organic dye

An Editorial Expression of Concern to this article was published on 08 May 2020

This article has been updated

Abstract

Synthesis and characterization of Fe doped TiO2 composite with iron concentration varying from 0 to 7% as a photocatalyst in the photodegradation of methylene orange on UV–Vis light irradiation in a closed reactor has been carried out. Synthesis was conducted by the ultrasound method at room temperature using tetrabutyl titanate and iron(III)chloride 6-hydrate as a precursor, followed by thermal treatment at a temperature of 600 °C. The characterizations were performed using X-ray diffraction (XRD), transmission electron microscopy, scanning electron microscopy (SEM), FT-IR spectrometry, thermal analysis, UV–Vis diffuse reflectance spectrophotometer, photoluminescence and Brunauer–Emmett–Teller (BET). XRD spectra revealed that samples crystallized in the anatase phase at 600 °C. The transmission and SEM were used to detect the morphology of synthesized nanoparticles, which sizes changed with the altitude in the doping concentration to 7%. FTIR spectra exhibit broad peaks where anatase phases of TiO2 demonstrate very sharp peaks. In accordance with UV–Vis absorption measurements, this diminution of nanoparticles sizes was followed by a decrease in the band gap value from 3.21 eV, for undoped TiO2, to 2.46 eV, for TiO2 doped at 7%. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The maximum photoconversion efficiency was 2.5%, which was six times the photoconversion efficiency of undoped TiO2. Finally, the prepared materials were used to photocatalyse the decolourization of methylene orange in aqueous medium as a model compound under the illumination of visible light (λ = 420 nm).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Change history

References

  1. 1.

    A. lassoued, M.S. lassoued, F. Karolak, S. Garcia-Granda, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci.: Mater. Electron. 28, 18480 (2017)

    CAS  Google Scholar 

  2. 2.

    W.B. Soltan, M.S. Lassoued, S. Ammar, T. Toupance, J. Mater. Sci.: Mater. Electron. 28(21), 15826–15834

  3. 3.

    A. lassoued, M.S. lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Mol. Struct. 1148, 276 (2017)

    CAS  Google Scholar 

  4. 4.

    W. Cun, Z. JIncai, W. Xinming, M. Bixian, S. Guoying, P. Ping’an, F. Jiamo, Appl. Catal. B: Environ. 39, 269 (2002)

    Google Scholar 

  5. 5.

    R. Bargougui, A. Oueslati, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, F. Hlel, S. Ammar, A. Dinia, J. Mater. Sci.: Mater. Electron. 25, 2066 (2014)

    CAS  Google Scholar 

  6. 6.

    A. lassoued, M.S. lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Mol. Struct. 1141, 99 (2017)

    CAS  Google Scholar 

  7. 7.

    A. Eshaghi, R. Mozaffarini, M. Pakshir, A. Eshaghi, J. Ceram. Int. 37, 327 (2011)

    CAS  Google Scholar 

  8. 8.

    A. Lassoued, M. Ben hassine, F. Karolak, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci.: Mater. Electron. 28, 18857 (2017)

    CAS  Google Scholar 

  9. 9.

    A. Sobhani-Nasab, M. Behpour, J. Mater. Sci. 27, 11946 (2016)

    CAS  Google Scholar 

  10. 10.

    M. Grotzel, Nature 414, 338 (2001)

    Google Scholar 

  11. 11.

    Z. Liu, Y. Li, C. Liu, J. Ya, E. Lei, W. Zhao, D. Zhao, L. An, ACS Appl. Mater. Interfaces 3, 1721 (2011)

    CAS  Google Scholar 

  12. 12.

    S.S. Kim, J. Jo, C. Chun, J.C. Hong, D.Y. Kim, J. Mater. Chem. 16, 370 (2006)

    CAS  Google Scholar 

  13. 13.

    C. Damm, F.W. Muller, G. Israel, S. Gablenz, H.P. Abicht, Dyes Pigm. 56, 151 (2003)

    CAS  Google Scholar 

  14. 14.

    J.A. Navio, G. Colh, M.I. Litter, G.N. Bianco, J. Mol. Catal. Chem. 106, 267 (1996)

    CAS  Google Scholar 

  15. 15.

    O. K.Maekawa, S. Chiyoda, M. Ohshiro, Okada,, H. Anpo, Yamashita, C. R. Chimie 9, 817 (2006)

    Google Scholar 

  16. 16.

    M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, J. Ceram. Int. 41, 8735 (2015)

    CAS  Google Scholar 

  17. 17.

    M.M. Momeni, Appl. Surf. Sci. 357, 160 (2015)

    CAS  Google Scholar 

  18. 18.

    M.M. Momeni, M. Hakimian, A. Kazempou, J. Ceram. Int. 41, 13692 (2015)

    CAS  Google Scholar 

  19. 19.

    M.M. Momeni, Y. Ghayeb, J. Ceram. Int. 42, 7014 (2016)

    CAS  Google Scholar 

  20. 20.

    N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, C. Hu, Ind. Eng. Chem. Res. 38, 373 (1999)

    CAS  Google Scholar 

  21. 21.

    M.M. Momeni, Z. Nazari, J. Ceram. Int. 42, 8691 (2016)

    CAS  Google Scholar 

  22. 22.

    M.M. Momeni, Y. Ghayeb, J. Alloys Compd. 637, 393 (2015)

    CAS  Google Scholar 

  23. 23.

    M.M. Momeni, Y. Ghayeb, M. Davarzadeh, J. Electroanal. Chem. 739, 149 (2015)

    CAS  Google Scholar 

  24. 24.

    L. Davydov, E.P. Reddy, P. France, P.G. Smirniotis, J. Catal. 203, 157 (2001)

    CAS  Google Scholar 

  25. 25.

    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)

    Google Scholar 

  26. 26.

    M.M. Momeni, Y. Ghayeb, J. Electroanal. Chem. 751, 43 (2015)

    CAS  Google Scholar 

  27. 27.

    M.M. Momeni, Y. Ghayeb, F. Ezati, J. Colloid Interface Sci. 514, 70 (2018)

    CAS  Google Scholar 

  28. 28.

    N. Serpone, D. Lawless, J. Didier, J.M. Herrmann, Langmuir. 10, 643 (1994)

    CAS  Google Scholar 

  29. 29.

    B. Sun, E.P. Reddy, P.G. Smirniotis, J. Catal. 237, 314 (2006)

    CAS  Google Scholar 

  30. 30.

    K. Bhattacharyya, S. Varma, A.K. Tripathi, A.K. Tyagi, J. Mater. Res. 25, 125 (2010)

    CAS  Google Scholar 

  31. 31.

    W.Ch. Hung, Y.Ch. Chen, H. Chu, T.K. Tseng, J Appl. Surf. Sci. 255, 2205 (2008)

    CAS  Google Scholar 

  32. 32.

    S. Wang, J.S. Lian, W.T. Zheng, Q. Jiang, J Appl. Surf. Sci. 263, 260 (2012)

    CAS  Google Scholar 

  33. 33.

    J. Tian, H. Gao, H. Kong, P. Yang, W. Zhang, J. Chu, Nanoscale Res. Lett. 8, 533 (2013)

    Google Scholar 

  34. 34.

    M. Alam Khan, S. Woo, O.B. Yang, Int. J. Hydrogen Energy 33, 5345 (2008)

    Google Scholar 

  35. 35.

    D.H. Kim, H.S. Hong, S.J. Kim, J.S. Song, K.S. Lee, J. Alloys Compd. 375, 259 (2004)

    CAS  Google Scholar 

  36. 36.

    L. Wen, B. Liu, X. Zhao, K. Nakata, T. Murakami, A. Fujishima, Int. J. Photoenergy 1, 2012 (2012)

    Google Scholar 

  37. 37.

    B. Liu, X. Wang, G. Cai, L. Wen, Y. Song, X. Zhao, J. Hazard. Mater. 169, 1112 (2009)

    CAS  Google Scholar 

  38. 38.

    A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Results Phys. 7, 3007 (2017)

    Google Scholar 

  39. 39.

    W.Ch. Hung, Y.Ch. Chen, H. Chu, T.K. Tseng, Appl. Surf. Sci. 255, 2205 (2008)

    CAS  Google Scholar 

  40. 40.

    P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, Curr. Appl. Phys. 13, 479 (2013)

    Google Scholar 

  41. 41.

    V.D. Binas, K.S.T. Maggos, A. Katsanaki, G. Kiriakidis, Appl. Catal. B: Environ. 113, 79 (2012)

    Google Scholar 

  42. 42.

    G. Colón, M. Maicu, M.C. Hidalgo, J.A. Navío, Appl. Catal. B: Environ. 67, 41 (2006)

    Google Scholar 

  43. 43.

    A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, J. Physica E 97, 328 (2018)

    CAS  Google Scholar 

  44. 44.

    J.I. Pankove, Optical processes in semiconductors. (Prentice-Hall Inc, Englewood Cliff, 1971), p. 34

    Google Scholar 

  45. 45.

    B. Choudhury, A. Choudhury, J. Lumin. 132, 178 (2012)

    CAS  Google Scholar 

  46. 46.

    C.H. Kim, B.H. Kim, K.S. Yang, Carbon 50, 2472 (2012)

    CAS  Google Scholar 

  47. 47.

    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Piero-tti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    CAS  Google Scholar 

  48. 48.

    R. Nandini, B. Vishalakshi, Chem. Eur. J. 9, 1 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Faculty of Science in University of Gabes, Tunisia, Spanish Ministerio de Economía y Competitividad (MINECO-13-MAT2013-40950-R, and FPI grant BES-2011-046948 to MSM.A.) and Gobierno del Principado de Asturias (GRUPIN14-060) are acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Saber Lassoued.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lassoued, M.S., Lassoued, A., Abdelbaky, M.S.M. et al. Influence of iron doping on the photocatalytic activity of nanocrystalline TiO2 particles fabricated by ultrasound method for enhanced degradation of organic dye. J Mater Sci: Mater Electron 29, 6019–6031 (2018). https://doi.org/10.1007/s10854-018-8576-4

Download citation