Skip to main content

Advertisement

Log in

Carboxymethyl cellulose aided fabrication of flaky structured mesoporous β-Co(OH)2/C nanocomposite for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports ecofriendly synthesis of mesoporous cobalt hydroxide using carboxymethyl cellulose as carbon source. Different analytical investigations on this material indicate the formation of mesoporous flakes. This kind of morphology is highly favorable for energy storage applications. The electrochemical performance of the electrode material is evaluated for supercapacitor, in an alkaline electrolyte; it shows high specific capacitance and good rate capacity. In addition, it retains 93% of initial capacitance after 3000 repeated charge–discharge cycles. This attractive nanocomposite shows very low value of charge transfer resistance (1 Ω). We design an asymmetric supercapacitor device using β-Co (OH)2/C and activated carbon as electrode. This device exhibits a specific capacitance of 102 F g−1 at 1 A g−1. The outcomes of these studies suggest its usefulness in supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816 (2017)

    Article  Google Scholar 

  2. D.P. Dubal, N.R. Chodankar, D.H. Kim, P.G. Romero, Towards flexible solid-state supercapacitors for smart and electronics, Chem. Soc. Rev. 47, 12421 (2018)

    Article  Google Scholar 

  3. P. Vialat, C. Mousty, C.T. Gheho, G. Renaudin, H. Marteinz, J.C. Dupin, E. Elkaim, F. Leroux, High-performing monometallic cobalt layered double hydroxide supercapacitor with defined local structure. Adv. Funct. Mater. 24, 4831 (2014)

    Article  Google Scholar 

  4. C. Jiang, L. Jing, X. Huang, M. Liu, C. Du, T. Liu, X. Pu, X.L. Wang, Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum cells by piezo-phototronic effect. ACS Nano 11, 9405 (2017)

    Article  Google Scholar 

  5. J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo, Z. Li, Y. Lin, K. Ruan, C. Wu, Y. Xie, Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 140, 493 (2018)

    Article  Google Scholar 

  6. H. Liu, Z. Shan, W. Huang, D. Wang, Z. Lin, Z. Cao, P. Chen, S. Meng, L. Chen, Self-assembly of silicon@oxidised mesocarbon mesobeads encapsulated in carbon as anode material. ACS Appl. Mater. Interfaces 10, 4715 (2018)

    Article  Google Scholar 

  7. Y. Chen, W.K. Pang, H. Bai, T. Zhou, Y. Liu, S. Li, Z. Guo, Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 17, 429 (2017)

    Article  Google Scholar 

  8. Y. Zhao, P. Zhang, W. Fu, X. Ma, J. Zhou, X. Zhang, J. Li, E. Xie, Understanding the role of Co3O4 on stability between active hierarchies and scaffolds: an insight into NiMoO4 composites for supercapacitors. Appl. Surf. Sci. 416, 160 (2017)

    Article  Google Scholar 

  9. T. Nguyen, M.F. Montemor, γ–FeOOH and amorphous Ni-Mn hydroxide on carbon nanofoam paper electrodes for hybrid supercapacitors. J. Mater. Chem. A 6, 2612 (2017)

    Article  Google Scholar 

  10. F. Liu, J. Wang, Q. Pan, An all-in-one self-healable capacitor with superior performance. J. Mater. Chem. A 6, 2500 (2018)

    Article  Google Scholar 

  11. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014)

    Article  Google Scholar 

  12. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017)

    Article  Google Scholar 

  13. Y. Zhang, F. Wang, H. Zhu, L. Zhou, X. Zheng, X. Li, Z. Chen, Y. Wang, D. Zhang, D. Pan, Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors. Appl. Surf. Sci. 416, 99 (2017)

    Google Scholar 

  14. B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J. Zhang, T. Li, N. Wang, Z. Guo, S. Angaiah, In stiu grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414 (2018)

    Article  Google Scholar 

  15. M. Kumar, A. Subramania, K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim. Acta 149, 152 (2014)

    Article  Google Scholar 

  16. V. Shobana, K. Balakrishnan, P. Parthiban, A. Subramania, Electrospun Nd3+ doped LiMn2O4 nanofibers as high performance cathode material for Li-ion capacitors. ChemElectroChem 4, 2059 (2017)

    Article  Google Scholar 

  17. K. Singh, B. Kirubasankar, S. Angaiah, Synthesis and electrochemical performance of P2-Na0.67 AlxCo1–x O2 (0.0 × 0.5) nanopowders for sodium-ion capacitors. Ionics 23, 731 (2017)

    Article  Google Scholar 

  18. Y. Wang, B. Shang, F. Lin, Y. Chen, R. Ma, B. Peng, Z. Deng, Controllable synthesis of hierarchical nickel hydroxide nanotubes for high performance supercapacitors. Chem. Commun. 54, 559 (2018)

    Article  Google Scholar 

  19. Q. Zhang, k Han, S. Li, M. Li, J. Li, K. Ren, Synthesis of garlic skin—derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10, 2427 (2018)

    Article  Google Scholar 

  20. N. Maheswari, G. Muralidharan, Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices. Appl. Surf. Sci. 416, 461 (2017)

    Article  Google Scholar 

  21. J. Xing, M. Liao, C. Chang, M. Yin, D. Li, Y. Song, The effect of anions on the electrochemical properties of polyaniline for supercapacitors. Phys. Chem. Chem. Phys. 19, 14030 (2017)

    Article  Google Scholar 

  22. C.H. Wang, J.L. Liu, H.Y. Huang, Pseudocapacitive performance of β-Co(OH)2 enhanced by Ni(OH)2 formation on porous Ni/Cu electrode. Electrochim. Acta 182, 47 (2015)

    Article  Google Scholar 

  23. Z. Huang, Y. Zhao, Y. Song, Y. Li, G. Wu, H. Tang, J. Zhao, Study on the oxidation process of cobalt hydroxide to cobalt oxide at low temperatures. RSC Adv. 6, 80059 (2016)

    Article  Google Scholar 

  24. D. Deng, X. Xing, N. Chen, Y. Li, Y. Wang, Hydrothermal synthesis of β-Co(OH)2 nanoplatelets: a novel catalyst for CO oxidation. J. Phys. Chem. Solids 100, 107 (2017)

    Article  Google Scholar 

  25. C. Zhao, X. Wang, S. Wang, H. Wang, Y. Yang, W. Zheng, Pseudocapacitive properties of cobalt hydroxide electrodeposited on Ni-foam supported carbon nanomaterial. Mater. Res. Bull. 48, 3189 (2013)

    Article  Google Scholar 

  26. T. Wu, C.Z. Yuan, Facile one-pot strategy synthesis of ultrathin α-Co(OH)2 nanosheets towards high-performance electrochemical capacitors. Mater. Lett. 85, 161 (2012)

    Article  Google Scholar 

  27. M. Aghazadeh, H.M. Shiri, A.A.M. Barmi, Uniform β-Co(OH)2 disc-like nanostructures prepared by low-temperature electrochemical rout as an electrode material for supercapacitors. Appl. Surf. Sci. 273, 237 (2013)

    Article  Google Scholar 

  28. A.A.M. Barmi, M. Aghazadeh, B. Arhami, H.M. Shiri, A.A. Fazl, E. Jangju, Porous cobalt hydroxide nanosheets with excellent supercapacitive behavior. Chem. Phys. Lett. 541, 65 (2012)

    Article  Google Scholar 

  29. J. Yang, H. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114, 111 (2010)

    Article  Google Scholar 

  30. J. Drofenik, M. Gaberscek, R. Dominko, F.W. Poulsen, M. Mogensen, S. Pojovnik, J. Jamnik, Cellulose as binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochim. Acta 48, 883 (2003)

    Article  Google Scholar 

  31. C. Yang, Z. Zhang, Z. Tian, K. Zhang, J. Li, Y. Lai, Effects of carboxymethyl cellulose on the electrochemical characteristics and the dendrite growth of zinc in alkaline solution. J. Electrochem. Chem. Soc. 163, A1836 (2016)

    Article  Google Scholar 

  32. P.P. Hankare, S.D. Jadhav, U.B. Sankpal, S.S. Chavan, K.J. Waghmare, B.K. Chougule, Synthesis, characterization and effect of sintering temperature on magnetic properties of mgni ferrite prepared by co-precipitation method. J. Alloys Compds. 475, 926 (2009)

    Article  Google Scholar 

  33. W.J. Zhou, M.W. Xu, D.D. Zhao, C.L. Xu, H.L. Li, Electrodeposition and characterization of ordered mesporous cobalt hydroxide films on different substrates for supercapacitors. Microporous Mesoporous Mater. 117, 55 (2009)

    Article  Google Scholar 

  34. L. Tian, K. Huang, Y. Liu, S. Liu, Topotactic synthesis of Co3O4 nanoboxes from Co(OH)2 nanoflakes. J. Solid State. Chem. 118, 2961 (2011)

    Article  Google Scholar 

  35. X. Tan, H. Gao, M. Yang, Y. Luan, W. Dong, Z. Jin, J. Yu, Y. Qi, Y. Feng, G. Wang, Synthesize of hierarchical sisal-like cobalt hydroxide and its electrochemical applications. J. Alloys Compds. 608, 282 (2014)

    Article  Google Scholar 

  36. E.M.S. Barbieri, E.P.C. Lema, M.F.F. Lelis, M.B.J.G. Freitas, Recycling of cobalt from spent Li-ion batteries as β-Co(OH)2 and the application of Co3O4 as pseudocapacitor. J. Power Sources 270, 158 (2014)

    Article  Google Scholar 

  37. R.D. Noce, S. Eugenio, T.M. Silva, M.J. Carmezim, M.F. Montemor, α-Co(OH)2/carbon foam composite as electrochemical capacitor electrode operating at 2 V in aqueous medium. J. Power Sources 288, 234 (2015)

    Article  Google Scholar 

  38. C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao, W. Zheng, Synthesis of Co(OH)2/graphene/ni foam nano-electrodes with excellent pseudo behavior and high cycling stability for supercapacitors. Int. J. Hydrog. Energy 37, 118486 (2012)

    Google Scholar 

  39. J. Wu, D. Zhang, Y. Wang, Y. Wan, B. Hou, Catalytic activity of graphene-cobalt hydroxide for oxygen reduction reaction in alkaline media. J. Power Sources 198, 122 (2012)

    Article  Google Scholar 

  40. C.M. Wu, C.Y. Fan, I.W. Sun, W.T. Tsai, J.K. Chang, Improved pseudocapacitive performance and cycle life cobalt hydroxide on an electrochemically derived nano-porous Ni framework. J. Power Sources 196, 7828 (2011)

    Article  Google Scholar 

  41. D. Ghosh, S. Giri, C.K. Das, Preparation of CTAB assisted hexagonal platelet Co(OH)2/graphene hybrid composite as efficient supercapacitor electrode material. ACS Sustain. Chem. Eng. 1, 1135 (2013)

    Article  Google Scholar 

  42. Z. Tai, J. Lang, X. Yan, Q. Xue, Mutually enhanced capacitances in carbon nanofiber/cobalt hydroxide composite paper for supercapacitor. J. Electrochem. Soc. 159, A485 (2012)

    Article  Google Scholar 

  43. I.M. Babu, K.K. Purushothaman, G. Muralidharan, Ag3O4 grafted NiO nanosheets for high performance supercapacitors. J. Mater. Chem. A 3, 420 (2015)

    Article  Google Scholar 

  44. S.H. Hazemi, A. Asghari, Electrochemical fabrication of Co(OH)2 nanostructures on electro-etched carbon fibers: characterization and its supercapacitive behavior. Mater. Lett. 142, 156 (2015)

    Article  Google Scholar 

  45. Y.S. He, D.W. Bai, X. Yang, J. Chen, X.Z. Liao, Z.F. Ma, A Co(OH)2-graphene nanosheets composite as high performance anode material for lithium ion batteries, electrochem. Electrochem. Commun. 12, 570 (2010)

    Article  Google Scholar 

  46. I. Zhang, X. Wang, J. ma, S. Liu, X. Yi, Preparation of cobalt hydroxide nanosheets on carbon nanotubes/carbon paper conductive substrate for supercapacitor application. Electrochim. Acta 104, 110 (2013)

    Article  Google Scholar 

  47. A. Subasri, K. Balakrishnan, E.R. Nagarajan, V. Devadoss, A. Subramania, Development of 2D La(OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim. Acta 281, 329 (2018)

    Article  Google Scholar 

  48. A. Subasri, K. Balakrishnan, M. Vignesh, V. Devadoss, A. Subramania, Facile synthesis of electrostatically anchored Nd(OH)3 nanorods onto graphene nanosheets as high capacitance electrode material for supercapacitors. New J. Chem. 42, 2923 (2018)

    Article  Google Scholar 

  49. F. Zhou, Q. Liu, J. Gu, W. Zhang, D. Zhang, Microwave assisted anchoring of flower like Co(OH)2 nanosheets on activated carbon to prepare hybrid electrodes for high-rate electrochemical capacitors. Electrochim. Acta 170, 328 (2015)

    Article  Google Scholar 

  50. S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Ag Incorporated Mn3O4/AC nanocomposites based supercapacitor devices with high energy density and high power density. Dalton Trans. 43, 17528 (2014)

    Article  Google Scholar 

  51. B. Kirubasakar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881 (2019)

    Article  Google Scholar 

  52. B. Kirubasankar, V. Murugadoss, S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv. 7, 5853 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Muralidharan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9842 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, I.M., William, J.J. & Muralidharan, G. Carboxymethyl cellulose aided fabrication of flaky structured mesoporous β-Co(OH)2/C nanocomposite for supercapacitors. J Mater Sci: Mater Electron 30, 2107–2117 (2019). https://doi.org/10.1007/s10854-018-0482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0482-2

Navigation