Skip to main content
Log in

Improving the stability of silver nanowire/polyimide composite films for transparent film heaters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible and transparent heaters have gradually attracted considerable attention because of its widely application in defrosting or demisting windows and medical thermotherapy. The stability of the heater under ambient conditions during working is one of the important properties. In this paper, we fabricated a highly stable and transparent film heater (TFH) through a simple drop-coating approach with burying silver nanowires (AgNWs) between colorless polyimide (cPI) and polymethyl methacrylate (PMMA). The developed TFH exhibited higher stability with the resistance increasing by 17% only for the initial value of 9.6 Ω after accelerating test at 105 °C and 100% relative humidity for 36 h, which was much lower than that of 83% for TFH without PMMA. Furthermore, the fabricated film heater covered with PMMA showed extreme stability in hydrogen sulfide oven. Meanwhile, there was no significant influence in the transmittance, mechanical flexibility and heating performance after coating a PMMA layer. Finally, we applied the film heater to demisting demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C. de Mello, Adv. Mater 23, 4371 (2011)

    Article  Google Scholar 

  2. Y. Jin, Y. Sun, K. Wang, Y. Chen, Z. Liang, Y. Xu, F. Xiao, Nano Res. 11, 1998 (2018)

    Article  Google Scholar 

  3. R. Fan, C. Zhang, X. Yin, Y. Xiong, S. Xu, X. Yan, F. Deng, J. Mater. Sci.: Mater. Electron. 28, 10092 (2017)

    Google Scholar 

  4. J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Nanoscale 4, 6408 (2012)

    Article  Google Scholar 

  5. H. Kang, S.J. Song, Y.E. Sul, B.S. An, Z. Yin, Y. Choi, L. Pu, C.W. Yang, Y.S. Kim, S.M. Cho, J.G. Kim, J.H. Cho, ACS Nano 12, 4894 (2018)

    Article  Google Scholar 

  6. L. Lian, D. Dong, S. Yang, B. Wei, G. He, ACS Appl. Mater. Interfaces 9, 11811 (2017)

    Article  Google Scholar 

  7. H.G. Cheong, R.E. Triambulo, G.H. Lee, I.S. Yi, J.W. Park, ACS Appl. Mater. Interfaces 6, 7846 (2014)

    Article  Google Scholar 

  8. T. Kim, Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, K.S. Suh, Adv. Funct. Mater. 23, 1250 (2013)

    Article  Google Scholar 

  9. S.J. Lee, J.W. Kim, J.H. Park, Y. Porte, J.H. Kim, J.W. Park, S. Kim, J.M. Myoung, J. Mater. Sci. 53, 12284 (2018)

    Article  Google Scholar 

  10. K.H. Kim, N.S. Jang, S.H. Ha, J.H. Cho, J.M. Kim, Small 14, 1704232 (2018)

    Article  Google Scholar 

  11. B. Li, S. Ye, I.E. Stewart, S. Alvarez, B.J. Wiley, Nano Lett. 15, 6722 (2015)

    Article  Google Scholar 

  12. F. Fang, G.W. Huang, H.M. Xiao, Y.Q. Li, N. Hu, S.Y. Fu, Compos. Sci. Technol. 156, 144 (2018)

    Article  Google Scholar 

  13. D. Lee, H. Lee, Y. Ahn, Y. Jeong, D.Y. Lee, Y. Lee, Nanoscale 5, 7750 (2013)

    Article  Google Scholar 

  14. M.B. Gebeyehu, T.F. Chala, S.Y. Chang, C.M. Wu, J.Y. Lee, RSC Adv. 7, 16139 (2017)

    Article  Google Scholar 

  15. B. You, B.K. Ju, J.W. Kim, Sens. Actuators A 250, 123 (2016)

    Article  Google Scholar 

  16. C. Mayousse, C. Celle, A. Fraczkiewicz, J.P. Simonato, Nanoscale 7, 2107 (2015)

    Article  Google Scholar 

  17. J. Jiu, J. Wang, T. Sugahara, S. Nagao, M. Nogi, H. Koga, K. Suganuma, M. Hara, E. Nakazawa, H. Uchida, RSC Adv. 5, 27657 (2015)

    Article  Google Scholar 

  18. C. Kleber, R. Wiesinger, J. Schnöller, U. Hilfrich, H. Hutter, M. Schreiner, Corros. Sci. 50, 1112 (2008)

    Article  Google Scholar 

  19. J.P. Franey, G.W. Kammlott, T.E. Graedel, Corros. Sci. 25, 133 (1985)

    Article  Google Scholar 

  20. T.E. Graedel, J.P. Franey, G.J. Gualtieri, G.W. Kammlott, D.L. Malm, Corros. Sci. 25, 1163 (1985)

    Article  Google Scholar 

  21. L. Volpe, P.J. Peterson, Corros. Sci. 29, 1179 (1989)

    Article  Google Scholar 

  22. H.H. Khaligh, K. Liew, Y. Han, N.M. Abukhdeir, I.A. Goldthorpe, Sol. Energy Mater. Sol. Cells 132, 337 (2015)

    Article  Google Scholar 

  23. X. He, A. Liu, X. Hu, M. Song, F. Duan, Q. Lan, J. Xiao, J. Liu, M. Zhang, Y. Chen, Q. Zeng, Nanotechnology 27, 475709 (2016)

    Article  Google Scholar 

  24. H.Y. Lu, C.Y. Chou, J.H. Wu, J.J. Lin, G.S. Liou, J. Mater. Chem. C 3, 3629 (2015)

    Article  Google Scholar 

  25. W. Lan, Y. Chen, Z. Yang, W. Han, J. Zhou, Y. Zhang, J. Wang, G. Tang, Y. Wei, W. Dou, Q. Su, E. Xie, ACS Appl. Mater. Interfaces 9, 6644 (2017)

    Article  Google Scholar 

  26. M. Patel, K.R. Chauhan, J. Kim, J.W. Kim, D. Lim, Sens. Actuators A 267, 8 (2017)

    Article  Google Scholar 

  27. P. Li, J.G. Ma, H.Y. Xu, H.C. Zhu, Y.C. Liu, Appl. Phys. Lett. 110, 161901 (2017)

    Article  Google Scholar 

  28. S. Ji, W. He, K. Wang, Y. Ran, C. Ye, Small 10, 4951 (2014)

    Article  Google Scholar 

  29. H.M. Tong, C.K. Hu, C. Feger, P.S. Ho, Polym. Eng. Sci. 26, 1213 (1986)

    Article  Google Scholar 

  30. S. Yao, J. Cui, Z. Cui, Y. Zhu, Nanoscale 9, 3797 (2017)

    Article  Google Scholar 

  31. K. Pyo, J.W. Kim, Curr. Appl. Phys. 16, 1453 (2016)

    Article  Google Scholar 

  32. S.J. Choi, S.J. Kim, J.S. Jang, J.H. Lee, I.D. Kim, Small 12, 5826 (2016)

    Article  Google Scholar 

  33. Y. Yu, W.F. Shen, F. Li, X.Z. Fang, H. Duan, F. Xu, Y.H. Xiong, W. Xu, W.J. Song, RSC Adv. 7, 28670 (2017)

    Article  Google Scholar 

  34. EIA/JEDEC Standard, Highly-accelerated temperature and humidity stress test (HAST) JESD22-A110-B (1999)

  35. V. Nagarajan, R. Chandiramouli, J. Inorg. Organomet. Polym. Mater. 26, 394 (2016)

    Article  Google Scholar 

  36. G.L. Wang, W. Xu, F. Xu, W.F. Shen, W.J. Song, Mater. Res. Express 4, 116405 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for the Ningbo Municipal Science and Technology Innovative Research Team (No. 2016B10005). Supports were also provided by National Natural Science Foundation of China (Nos. 61774160 and 61605224) and Ningbo Natural Science Foundation (Nos. 2017A610026 and 2017A610021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xu or Weijie Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Xu, W., Shen, W. et al. Improving the stability of silver nanowire/polyimide composite films for transparent film heaters. J Mater Sci: Mater Electron 30, 2089–2095 (2019). https://doi.org/10.1007/s10854-018-0480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0480-4

Navigation