Skip to main content
Log in

Influences of reaction temperature, holding time and S/Zn molar ratio on structure, morphology, optical and electrical properties of ZnS nanoparticles synthesized by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnS nanoparticles were synthesized by hydrothermal method. The influences of reaction temperature, holding time and S/Zn molar ratio on the structure, morphology, optical and electrical properties of ZnS nanoparticles were studied systematically at the range of 90 °C to 180 °C, 6 h to 15 h and 1:2 to 2.5:1, respectively. The results indicate that the reaction temperature, holding time and S/Zn molar ratio have no influence on phase structure. All the samples belong to zinc blende cubic structure of ZnS. However, the reaction temperature has strong influences on the growth of crystals, optical and electrical properties due to LaMer theory and two-stage growth kinetics. When the reaction temperature increases from 90 °C to 180 °C, the crystallite sizes increase from 7.0 nm to 9.7 nm and the average particle sizes decrease from 21 nm to 14 nm; the emission peaks are red shifted from 445 nm to 460 nm and the emission intensity is increased by 4.4 times; the dielectric constant and dielectric loss decrease from 4.86 to 4.71 and 2.86 × 104 to 2.70 × 104, respectively. While, the holding time has slight influences on the growth of crystals, optical and electrical properties. And the emission band and emission intensity of ZnS nanoparticles can be adjusted by the S/Zn molar ratio. When the S/Zn molar ratio is less than 1:1 or equal to 1:1, the emission bands range from 400 nm to 600 nm centered at ~ 450 nm. When the S/Zn molar ratio is greater than 1:1, the emission bands range from 400 nm to 700 nm centered at ~ 540 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Jeong, H.M. Oh, S. Bang et al., Nano Lett. 16, 1858 (2016)

    Article  Google Scholar 

  2. A. Martí, N. López, E. Antolín et al., Thin Solid Films 511–512, 638 (2006)

    Article  Google Scholar 

  3. M.R. Hoffmann, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  4. S. Zinatloo-Ajabshir, M. Salavati-Niasari, A. Sobhani, Z. Zinatloo-Ajabshir, J. Alloys Compd. 767, 1164 (2018)

    Article  Google Scholar 

  5. X. Wu, H. Liu, J. Liu et al., Nat. Biotechnol. 21, 41 (2003)

    Article  Google Scholar 

  6. S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, Appl. Opt. 25, 1417 (1986)

    Article  Google Scholar 

  7. M.C. Divyasree, K. Chandrasekharan, Opt. Mater. 67, 119 (2017)

    Article  Google Scholar 

  8. K. Qiu, D. Qiu, L. Cai et al., Mater. Lett. 198, 23 (2017)

    Article  Google Scholar 

  9. Y. Zhao, Y. Zhang, G. Qin et al., Int. J. Nanomed. 12, 1927 (2017)

    Article  Google Scholar 

  10. V.G. Bessergenev, E.N. Ivanova, Y.A. Kovalevskaya et al., Mater. Res. Bull. 30, 1393 (1995)

    Article  Google Scholar 

  11. N. Bansal, G.C. Mohanta, K. Singh, Ceram. Int. 43, 7193 (2017)

    Article  Google Scholar 

  12. W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, J. Nanomater. (2017), 7(1), 22

    Article  Google Scholar 

  13. P.V. Ben, B.H. Van, VNU J. Sci. Math. Phys. 33, 81 (2017)

    Google Scholar 

  14. S.K. Panda, S. Chaudhuri, J. Colloid Interface Sci. 313, 338 (2007)

    Article  Google Scholar 

  15. F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, Z. Hamidi, CrystEngComm 14, 7338 (2012)

    Article  Google Scholar 

  16. Z. Ren, H. Yang, L. Shen, S.D. Han, J. Mater. Sci. Mater. Electron. 19, 1 (2008)

    Article  Google Scholar 

  17. T.I. Chanu, D. Samanta, A. Tiwari, S. Chatterjee, Appl. Surf. Sci. 391, 548 (2016)

    Article  Google Scholar 

  18. G.O. Siqueira, T. Matencio, S.H. Da et al., Phys. Chem. Chem. Phys. 15, 6796 (2013)

    Article  Google Scholar 

  19. L. Zhang, L. Yang, Cryst. Res. Technol. 43, 1022 (2010)

    Article  Google Scholar 

  20. X. Yu, L.Y. Cao, J.F. Huang, L. Jia, F. Jie, C.Y. Yao, J. Alloys Compd. 549, 1 (2013)

    Article  Google Scholar 

  21. N. Arbi, I.B. Assaker, M. Gannouni, A. Kriaa, R. Chtourou, Mater. Sci. Semicond. Process. 40, 873 (2015)

    Article  Google Scholar 

  22. H. Qu, L. Cao, G. Su, W. Liu, Y. Sun, B. Dong, Adv. Mater. Res. 79–82, 589 (2009)

    Article  Google Scholar 

  23. T.T.Q. Hoa, N.D. The, S. Mcvitie et al., Opt. Mater. 33, 308 (2011)

    Article  Google Scholar 

  24. S. Kumar, N.K. Verma, J. Mater. Sci. Mater. Electron. 25, 785 (2014)

    Article  Google Scholar 

  25. L. Liu, L. Yang, Y. Pu, D. Xiao, J. Zhu Mater. Lett. 66, 121 (2012)

    Article  Google Scholar 

  26. F. Beshkar, S. Zinatlooajabshir, S. Bagheri, M. Salavatiniasari, PLoS ONE 12, e0158549 (2017)

    Article  Google Scholar 

  27. Z.Q. Li, J.H. Shi, Q.Q. Liu, Z.A. Wang, Z. Sun, S.M. Huang, Appl. Surf. Sci. 257, 122 (2010)

    Article  Google Scholar 

  28. B.D. Cullity, Am. J. Phys. 25, 50 (1957)

    Article  Google Scholar 

  29. X. Zhou, Q. Yang, H. Wang, F. Huang, J. Zhang, S. Xu, Adv. Powder Technol. 29, 977 (2018)

    Article  Google Scholar 

  30. A.S. Kabalnov, E.D. Shchukin, Adv. Colloid Interface 38, 69 (1992)

    Article  Google Scholar 

  31. T. Zargar, A. Kermanpur, Ceram. Int. 43, 5794 (2017)

    Article  Google Scholar 

  32. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, J. Clean Prod. 198, 11 (2018)

    Article  Google Scholar 

  33. M.B. Mohamed, K.Z.I. †, A.Stephan Link, M.A. Elsayed, J. Phys. Chem. B 102, 9370 (1998)

    Article  Google Scholar 

  34. V.K. Lamer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950)

    Article  Google Scholar 

  35. R. Sahraei, S. Darafarin, J. Lumin. 149, 170 (2014)

    Article  Google Scholar 

  36. G. Murugadoss, J. Lumin. 132, 2043 (2012)

    Article  Google Scholar 

  37. T.Q.H. Tran, L. Van Vu, T.D. Canh, N.N. Long, J. Phys. Conf. Ser. (2009) p. 012081

  38. J. Liu, J. Ma, Y. Liu et al., J. Alloys Compd. 486, L40 (2009)

    Article  Google Scholar 

  39. Z. Li, J. Wang, X. Xu, X. Ye, Mater. Lett. 62, 3862 (2008)

    Article  Google Scholar 

  40. P. Iranmanesh, S. Saeednia, N. Khorasanipoor, Mater. Sci. Semicond. Process. 68, 193 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project of Natural Science Foundation Zhejiang Provincial (LY15F050005 and LZ14B010001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghua Yang or Shiqing Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yang, Q., Wang, H. et al. Influences of reaction temperature, holding time and S/Zn molar ratio on structure, morphology, optical and electrical properties of ZnS nanoparticles synthesized by hydrothermal method. J Mater Sci: Mater Electron 30, 1089–1099 (2019). https://doi.org/10.1007/s10854-018-0378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0378-1

Navigation