Effect of Y2O3, Nd2O3 or Sm2O3 on the microstructure and electrical properties of ZnVMnNbO varistor ceramics

Abstract

This study addresses the different effect of doping 0.05 mol% Y2O3, Nd2O3 or Sm2O3 on the microstructure and nonlinear electrical properties of the ZnO–V2O5–MnCO3–Nb2O5 (ZnVMnNbO) ceramic sintered at 930 °C for 3 h using XRD, FESEM, EDS and I–V measurements. The results show the density and the microstructure homogeneity of the ZnVMnNbO ceramic increase with the addition of Y2O3, Nd2O3 or Sm2O3. Meanwhile, REVO4 (RE=Y, Nd or Sm) forms as the new secondary crystalline phase at ZnO grain nodal areas of the ZnVMnNbO ceramic which originally has Zn3(VO4)2, ZnMn2O4 and ZnV2O4 as the secondary phases. The addition of Y2O3 or Sm2O3 can effectively improve the nonlinearity coefficient of the ZnVMnNbO varistor ceramic from 33.6 of the RE-free sample to near 37 by increasing interface state density. In the contrast, Nd2O3 considerably reduces α to 25.9 by decreasing both barrier height (ΦB) and depletion layer width (ω).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    D.R. Clarke, J. Am. Ceram. Soc. 82, 3 (1999)

    Google Scholar 

  2. 2.

    K.O. Magnusson, S. Wiklund, J. Appl. Phys. 76, 11 (1994)

    Article  Google Scholar 

  3. 3.

    P.Q. Mantas, J.L. Baptista, J. Eur. Ceram. Soc. 15, 7 (1995)

    Article  Google Scholar 

  4. 4.

    R.A. Winston, J.F. Cordaro, J. Appl. Phys. 68, 12 (1990)

    Article  Google Scholar 

  5. 5.

    F. Stucki, F. Greuter, Appl. Phys. Lett. 57, 5 (1990)

    Article  Google Scholar 

  6. 6.

    D. Xu, X. Cheng, G. Zhao, J. Yang, L. Shi, Ceram. Int. 37, 3 (2011)

    Google Scholar 

  7. 7.

    N. Raghu, T. Kutty, Appl. Phys. Lett. 60, 1 (1992)

    Article  Google Scholar 

  8. 8.

    Y. Yano, Y. Takai, H. Morooka, J. Mater. Res. 9, 1 (1994)

    Article  Google Scholar 

  9. 9.

    S. Yang, D. Zhu, J. Mater. Sci. 29, 4 (2018)

    Google Scholar 

  10. 10.

    M. Lei, S. Li, X. Jiao, J. Li, M.A. Alim, J. Phys. D 37, 5 (2004)

    Article  Google Scholar 

  11. 11.

    M. Wang, Q. Tang, C. Yao, Ceram. Int. 36, 3 (2010)

    Google Scholar 

  12. 12.

    J. Zhu, Q. Liu, J. Wang, Y. Zhou, W. Ye, F. Wang, J. Mater. Sci. 27, 1 (2016)

    Google Scholar 

  13. 13.

    G. Chen, J. Li, Y. Yang, C. Yuan, C. Zhou, Mater. Res. Bull. 50, 3786 (2014)

    Google Scholar 

  14. 14.

    C. Yang, D. Zhu, T. Zeng, L. Jiao, J. Electron. Mater. 44, 8 (2015)

    Google Scholar 

  15. 15.

    T. Kato, Y. Takada, J. Electroceram. 31, 1–2 (2013)

    Article  Google Scholar 

  16. 16.

    M. Zhao, X. Li, Y. Shi, T. Li, B. Li, Ceram. Int. 44, 6 (2018)

    Google Scholar 

  17. 17.

    C.W. Nahm, J. Rare Earth 32, 1 (2014)

    Article  Google Scholar 

  18. 18.

    S. Roy, D. Das, T.K. Roy, J. Alloy. Compd. 749, 15 (2018)

    Article  Google Scholar 

  19. 19.

    C.W. Nahm, J. Alloy. Compd. 578, 25 (2013)

    Article  Google Scholar 

  20. 20.

    C.W. Nahm, Ceram. Int. 41, 3 (2015)

    Article  Google Scholar 

  21. 21.

    C. Nahm, J. Am. Ceram. Soc. 94, 10 (2011)

    Google Scholar 

  22. 22.

    C.W. Nahm, J. Mater. Sci. 22, 11 (2011)

    Google Scholar 

  23. 23.

    N.H. Isa, A. Zakaria, R.S. Azis, W.R.W. Abdullah, Dig. J. Nanomater. Biosci. 12, 3 (2017)

    Google Scholar 

  24. 24.

    C.W. Nahm, J. Mater. Sci. 24, 12 (2013)

    Google Scholar 

  25. 25.

    C.W. Nahm, J. Mater. Sci. 24, 1 (2013)

    Google Scholar 

  26. 26.

    R. Guo, L. Fang, H. Zhou, X. Chen, D. Chu, B. Chan, Y. Qin, J. Mater. Sci. 8, 24 (2013)

    Google Scholar 

  27. 27.

    C. Nahm, Mater. Sci. Semicond. Proc. 16, 5 (2013)

    Google Scholar 

  28. 28.

    C. Nahm, Mater. Sci. Semicond. Proc. 16, 3 (2013)

    Google Scholar 

  29. 29.

    C.W. Nahm, J. Mater. Sci. 26, 6 (2015)

    Google Scholar 

  30. 30.

    C.W. Nahm, J. Mater. Sci. 24, 8 (2013)

    Google Scholar 

  31. 31.

    C.W. Nahm, J. Mater. Sci. 29, 4 (2018)

    Google Scholar 

  32. 32.

    H.H. Hng, P.L. Chan, Ceram. Int. 30, 7 (2004)

    Article  Google Scholar 

  33. 33.

    T.K. Gupta, W.G. Carlson, J. Mater. Sci. 20, 10 (1985)

    Google Scholar 

  34. 34.

    C.W. Nahm, Ceram. Int. 35, 541 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Inner Mongolia Grassland Elites (Cao Yan Ying Cai) Innovation Group Fund. Support from Inner Mongolia Science & Technology Innovation Team of Integrated Exploitation of Bayan Obo Mine Multi-metal Resource (IMUST01) is also fully acknowledged by all authors of the current study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ming Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Li, X., Li, T. et al. Effect of Y2O3, Nd2O3 or Sm2O3 on the microstructure and electrical properties of ZnVMnNbO varistor ceramics. J Mater Sci: Mater Electron 30, 450–456 (2019). https://doi.org/10.1007/s10854-018-0309-1

Download citation