Skip to main content
Log in

Structural transformation and magnetic properties of copper ferrite nanoparticles prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper ferrite nanoparticles were synthesized by sol–gel method by varying metal nitrate to citric acid (M:C) ratio as 1:1, 1:2, 1:3 and 2:1 and were subsequently annealed at different temperatures ranging from 400 to 900 °C in air for 3 h. These nanoparticle samples were characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, Raman spectroscopy, field emission gun scanning electron microscopy and vibrating sample magnetometer. X-ray diffraction studies showed the as-prepared nanoparticles prepared with M:C ratio 1:1, 1:2, and 2:1 are mostly cubic Cu-ferrite. After annealing phase transformation occurred from cubic to tetragonal Cu-ferrite with increase in c/a ratio. Magnetization value decreased and coercivity increased with the increase in annealing temperature and c/a ratio for the samples prepared with M:C = 1:1 and 1:2. For the samples prepared with M:C = 1:3, the magnetization increased with the increase in annealing temperature whereas for the samples prepared with M:C = 2:1, a minimum was observed in the magnetization values for the sample annealed at 600 °C. The highest magnetization values of 45.6 and 49.5 emu/g at 300 and 60 K, respectively were observed in the present study for the as prepared sample prepared with M:C = 2:1. The highest coercivity of 1530 and 1690 Oe at 300 and 60 K, respectively were observed for the sample prepared with M:C = 1:3 and annealed at 800 °C. The observed magnetic properties can be understood on the basis of phase transformation, increase in tetragonal distortion and c/a ratio, and grain growth in these nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Zhang, Q. Yuan, R. Ma, X. Liu, C. Gao, M. Liu, C.-L. Jia, H. Wang, RSC Adv. 7, 21926 (2017)

    Article  Google Scholar 

  2. M. Kucera, P. Brom, J. Appl. Phys. 117, 17B738 (2015)

    Article  Google Scholar 

  3. T.P. Sumangala, C. Mahender, A. Barnabe, N. Venkataramani, S. Prasad, J. Magn. Magn. Mater. 418, 48 (2016)

    Article  CAS  Google Scholar 

  4. R. Kalai Selvan, N. Kalaiselvi, C.O. Augustin, C.H. Doh, C. Sanjeeviraja, J. Power Sources 157, 522 (2006)

    Article  CAS  Google Scholar 

  5. M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Adv. Powder Technol. 23, 315 (2012)

    Article  CAS  Google Scholar 

  6. S.D. Sartale, C.D. Lokhande, M. Muller, Mater. Chem. Phys. 80, 120 (2003)

    Article  CAS  Google Scholar 

  7. W. Nowicki, J. Darul, A.M.T. Bell, Z. Krist. 1, 355 (2011)

    Google Scholar 

  8. X.-X. Tang, A. Manthiram, J.B. Goodenough, J. Solid State Chem. 79, 250 (1989)

    Article  CAS  Google Scholar 

  9. H. Ohnishi, T. Teranishi, J. Phys. Soc. Jpn. 16, 35 (1961)

    Article  CAS  Google Scholar 

  10. D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. Ayyub, J. Phys. D Appl. Phys. 43, 195004 (2010)

    Article  Google Scholar 

  11. S. Roy, J. Ghose, J. Solid State Chem. 144, 159 (1999)

    Article  CAS  Google Scholar 

  12. M. Desai, S. Prasad, N. Venkataramani, I. Samadar, A.K. Nigam, R. Krishnan, IEEE Trans. Magn. 38, 3012–3014 (2002)

    Article  CAS  Google Scholar 

  13. N.M. Deraz, J. Alloys Compd. 501, 317 (2010)

    Article  CAS  Google Scholar 

  14. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, J. Supercond. Nov. Magn. 29, 759 (2016)

    Article  CAS  Google Scholar 

  15. R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, J. Solid State Chem. 213, 57 (2014)

    Article  Google Scholar 

  16. S. Roy, J. Ghose, J. Appl. Phys. 87, 6226 (2000)

    Article  CAS  Google Scholar 

  17. G.F. Goya, H.R. Rechenberg, J.Z. Jiang, J. Appl. Phys. 84, 1101 (1998)

    Article  CAS  Google Scholar 

  18. J. Z. J. and H.R.R.G.F. Goya, J. Phys. Condens. Matter 11, 403 (1999)

    Google Scholar 

  19. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, Mater. Res. Bull. 48, 1439 (2013)

    Article  CAS  Google Scholar 

  20. M. Chithra, C.N. Anumol, B. Sahu, S.C. Sahoo, J. Magn. Magn. Mater. 401, 1 (2016)

    Article  CAS  Google Scholar 

  21. M. Chithra, C.N. Anumol, B. Sahu, S.C. Sahoo, J. Magn. Magn. Mater. 424, 174 (2017)

    Article  CAS  Google Scholar 

  22. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691 (2016)

    Article  CAS  Google Scholar 

  23. Z. Xiao, S. Jin, X. Wang, W. Li, J. Wang, C. Liang, J. Mater. Chem. 22, 16598 (2012)

    Article  CAS  Google Scholar 

  24. M. Desai, S. Prasad, N. Venkataramani, I. Samajdar, A.K. Nigam, R. Krishnan, J. Appl. Phys. 91, 2220 (2002)

    Article  CAS  Google Scholar 

  25. P. Tailhades, C. Villette, A. Rousset, G.U. Kulkarni, K.R. Kannan, C.N.R. Rao, M. Lenglet, J. Solid State Chem. 141, 56 (1998)

    Article  CAS  Google Scholar 

  26. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison Wesley Publishing Company, Boston, 1978)

    Google Scholar 

  27. Y. Xu, J. Sherwood, Y. Qin, R.A. Holler, Y. Bao, Nanoscale 7, 12641 (2015)

    Article  CAS  Google Scholar 

  28. M. Balaji, P.Chithra Lekha, D. Pathinettam, Padiyan, Vib. Spectrosc. 62, 92 (2012)

    Article  CAS  Google Scholar 

  29. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Solid State Chem. 184, 89 (2011)

    Article  CAS  Google Scholar 

  30. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2009)

    Google Scholar 

  31. V.A. Zhuravlev, E.P. Naiden, R.V. Minin, V.I. Itin, M.R. Ufimtsev, IOP Conf. Ser. Mater. Sci. Eng. 110, 012084 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. T.P. Sumangala, IIT Bombay, Powai, Mumbai, India for sharing scientific knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subasa C. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subha, A., Shalini, M.G., Sahu, B. et al. Structural transformation and magnetic properties of copper ferrite nanoparticles prepared by sol–gel method. J Mater Sci: Mater Electron 29, 20790–20799 (2018). https://doi.org/10.1007/s10854-018-0221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0221-8

Navigation